Purely flavor-changing Z' bosons and where they might hide

Based on work in collaboration with Joerg Jaeckel [JHEP 1705 (2017) 010]

Patrick Foldenauer

Pheno 2017 - University of Pittsburgh

May 9, 2017

Patrick Foldenauer

.

Pheno 2017 - University of Pittsburgh

1. Introduction

- 2. The collider point of view
- 3. Flavor constraints
- 4. New Physics potential
- 5. Conclusion

□ ▶ < 圕 ▶ < 볼 ▶ < 볼 ▶ 로| = · · 오. Pheno 2017 - University of Pittsburgh

Patrick Foldenauer Purely flavor-changing Z' bosons and where they might hide

A flavorful Z' model

What is the origin of flavor?

- Horizontal/gauged flavor group G_H ?
- Breaking leads to massive gauge bosons (possibly mediating FCNCs)
- Simplest approach: extra U(1)
- Explore limits of standard tests & probe corners of parameter space

$SU(3)_C \times SU(2)_L \times U(1)_Y$

Pheno 2017 - University of Pittsburgh

Purely flavor-changing Z' bosons and where they might hide

A flavorful Z' model

What is the origin of flavor?

- Horizontal/gauged flavor group G_H ?
- Breaking leads to massive gauge bosons (possibly mediating FCNCs)
- Simplest approach: extra U(1)
- Explore limits of standard tests & probe corners of parameter space

Phenomenological Model

$$\mathcal{L}_{Z'} = \bar{q} \gamma^{\mu} \left[g_{qq'}^{L} P_{L} + g_{qq'}^{R} P_{R} \right] q' Z'_{\mu} \\ + \bar{\ell} \gamma^{\mu} \left[g_{\ell\ell'}^{L} P_{L} + g_{\ell\ell'}^{R} P_{R} \right] \ell' Z'_{\mu} + h.c.$$

$SU(3)_C \times SU(2)_L \times U(1)_Y$

Pheno 2017 - University of Pittsburgh

Purely flavor-changing Z' bosons and where they might hide

The collider point of view

Explore potential of multipurpose experiments in flavor physics.

 \rightarrow reinterpret $e\mu, e\tau, \mu\tau$ *s*-channel peak search [ATLAS, arXiv:1503.04430]

Patrick Foldenauer Purely flavor-changing Z' bosons and where they might hide Pheno 2017 - University of Pittsburgh

The collider point of view

Explore potential of multipurpose experiments in flavor physics. \rightarrow reinterpret $e\mu$, $e\tau$, $\mu\tau$ *s*-channel peak search [ATLAS, arXiv:1503.04430]

Strategy

- 1. Simulate partonic cross section $\sigma_{\rm LO}$
- 2. Include *K*-factor and detector effects $A \times \epsilon$
- 3. Recast ATLAS limit from approximate scaling:

$$\sigma \approx \frac{1}{3} \; \frac{s}{M_{Z'}^4} \; \frac{g_{qq'}^2 \, g_{\ell\ell'}^2}{3 \, g_{qq'}^2 + g_{\ell\ell'}^2}$$

Pheno 2017 - University of Pittsburgh

Meson mixing

- Usually strong constraints arise from mass splitting of neutral meson M and its conjugate state M
- Treat Z' contribution in an EFT framework [Buras, Girrbach, arXiv:1201.1302]

$$\Delta M \propto rac{\left(g_{qq'}^R
ight)^2}{M_{Z'}^2} \left[\mathcal{C}^{\mathrm{LL}}\left(1+
ho_q^2
ight)+\mathcal{C}^{\mathrm{LR}}
ho_q
ight]$$

with $\rho_q = g_{qq'}^L / g_{qq'}^R$

Patrick Foldenauer

Pheno 2017 - University of Pittsburgh

		Flavor constraints				
Meson m	ixing		q'	q		
► Usuall	y strong constraints ari	se from	M	\sim	- 	

- mass splitting of neutral meson \mathcal{M} and its conjugate state $\bar{\mathcal{M}}$
- Treat Z' contribution in an EFT framework [Buras, Girrbach, arXiv:1201.1302]

$$\Delta M \propto \frac{\left(g_{qq'}^R\right)^2}{M_{Z'}^2} \left[\mathcal{C}^{\mathrm{LL}} \left(1 + \rho_q^2\right) + \mathcal{C}^{\mathrm{LR}} \rho_q \right]$$

with $\rho_q = g_{aa'}^L / g_{aa'}^R$

Patrick Foldenauer

Pheno 2017 - University of Pittsburgh

Purely flavor-changing Z' bosons and where they might hide

Muonium oscillation

- Muonium is hydrogen-like e⁻µ⁺ bound state
- ► In presence of FCNCs can oscillate into conjugate bound state consisting of e⁺µ⁻
- MACS experiment at PSI has searched for muonium oscillations [Willmann, hep-ex/9807011]

Leptonic meson decays

- ► Tree-level decay of flavored mesons via $\bar{q}q' \rightarrow Z' \rightarrow \bar{\ell}\ell'$
- Get contribution to BR($\mathcal{M} \rightarrow \bar{\ell}\ell'$) [Golowich, arXiv:0903.2830]

Pheno 2017 - University of Pittsburgh

Pheno 2017 - University of Pittsburgh

Leptonic τ decay Consider $\mu\tau$ sector:

Pheno 2017 - University of Pittsburgh

Purely flavor-changing Z' bosons and where they might hide

Leptonic τ decay Consider $\mu\tau$ sector:

• Measured decay rate of $\tau \rightarrow \mu \bar{\nu} \nu$ shows $\sim 2.4 \sigma$ deviation from SM

$$rac{\Gamma_{ au o \muar
u
u}}{\Gamma^{
m SM}_{ au o \muar
u
u}} - 1 = (0.69\pm 0.29)\%$$

Pheno 2017 - University of Pittsburgh

Purely flavor-changing Z' bosons and where they might hide

Leptonic τ decay

Consider $\mu\tau$ sector:

• Measured decay rate of $\tau \rightarrow \mu \bar{\nu} \nu$ shows $\sim 2.4 \sigma$ deviation from SM

$$rac{\Gamma_{ au
ightarrow \muar{
u}
u}}{\Gamma^{
m SM}_{ au
ightarrow \muar{
u}
u}} - 1 = (0.69 \pm 0.29)\%$$

Muon magnetic moment

 \blacktriangleright Observed anomalous magnetic moment of muon exhibits $\sim 3.6\,\sigma$ excess

$$\Delta a_{\mu} = (2.87 \pm 0.80) imes 10^{-9}$$

Pheno 2017 - University of Pittsburgh

Leptonic τ decay

Consider $\mu\tau$ sector:

• Measured decay rate of $\tau \rightarrow \mu \bar{\nu} \nu$ shows $\sim 2.4 \sigma$ deviation from SM

$$rac{\Gamma_{ au
ightarrow \muar{
u}
u}}{\Gamma^{
m SM}_{ au
ightarrow \muar{
u}
u}} - 1 = (0.69 \pm 0.29)\%$$

Muon magnetic moment

 \blacktriangleright Observed anomalous magnetic moment of muon exhibits $\sim 3.6\,\sigma$ excess

$$\Delta a_{\mu} = (2.87 \pm 0.80) imes 10^{-9}$$

Simultaneous explanation with Z' for $g_{\mu\tau}^L/g_{\mu\tau}^R \approx 0.05$

Pheno 2017 - University of Pittsburgh

New exotic τ decay

Consider $\mu\tau$ sector:

• New exotic τ decay

$$au^{\pm}
ightarrow \ell^{\pm} \left(\pi^0 \, K^0 / \pi^{\pm} \, K^{\mp}
ight)$$

- ► Has been searched for at BABAR and BELLE
- Current limit $\Gamma_{\tau \to \mu \, \pi^+ K^-} < 16 \times 10^{-8}$
- BELLE-II aims at O(10⁻⁹) sensitivity in τ branching fraction!

$$\Gamma_{ au
ightarrow K^- \pi^+ \mu} \,pprox \, 3.4 imes 10^{-9}$$

$$(m=750$$
 GeV, $g_{sd}=6\cdot 10^{-4}$, $g_{\mu au}=4$)

Pheno 2017 - University of Pittsburgh

Purely flavor-changing Z' bosons and where they might hide

Conclusion

- Investigated models with one flavor-changing coupling in quark and lepton sector
- Large parameter scan for $qq' \in \{sd, bd, bs, cu\}$ and $\ell\ell' \in \{e\mu, e\tau, \mu\tau\}$
- ▶ For $g^L_{\mu\tau}/g^R_{\mu\tau} \approx 0.05$ simultaneous explanation of a_μ and τ decay anomaly
- New exotic signature:

= ~ ~ ~

Conclusion

- Investigated models with one flavor-changing coupling in quark and lepton sector
- Large parameter scan for $qq' \in \{sd, bd, bs, cu\}$ and $\ell\ell' \in \{e\mu, e\tau, \mu\tau\}$
- ▶ For $g^L_{\mu\tau}/g^R_{\mu\tau} \approx 0.05$ simultaneous explanation of a_μ and τ decay anomaly
- New exotic signature:

Thank you!

		Conclusion

も日本 本語 本語 本語 本語 そうきん

Patrick Foldenauer Purely flavor-changing Z' bosons and where they might hide Pheno 2017 - University of Pittsburgh

Purely flavor-changing Z' bosons and where they might hide

Purely flavor-changing Z' bosons and where they might hide

Purely flavor-changing Z' bosons and where they might hide

No cancellation

Without tuning the quark couplings the parameter space looks much more constrained!

<ロト < 部ト < 画ト < 画ト < 画ト = 戸 の Q () Pheno 2017 - University of Pittsburgh

Patrick Foldenauer

Meson decay with neutrinos - SM

Example $K \to \pi \bar{\nu} \nu$

Patrick Foldenauer

Meson decay with neutrinos - Z'

Example $K \to \pi \bar{\nu} \nu$

- SM decay loop suppressed
- ► Z' induces tree-level decay ⇒ strong effect and thus sensitive channel
- Only present if Z' couples to LH leptons (assuming only SM neutrinos)
- Extract hadronic matrix element from related SM process (using isospin symmetry)

Anomalous magnetic moment

 Observed anomalous magnetic momenta discrepancies (Δa = a^{exp} - aSM)

$$\Delta a_{\mu} = (2.87 \pm 0.80) imes 10^{-9} \ \Delta a_{e} = (-1.05 \pm 0.81) imes 10^{-12}$$

Approximate contribution

$$\mathsf{a}_{f_a} pprox rac{(g^R_{ab})^2}{4 \, \pi^2 M_{Z'}^2} \, m_a \left[m_b \,
ho_\ell - rac{m_a}{3} \, (1 +
ho_\ell^2)
ight]$$

► Contribution to (g - 2)_e suppressed by light mass

$$rac{m_e^2}{m_\mu^2} pprox rac{1}{(200)^2} \sim \mathcal{O}(10^{-5})$$

Patrick Foldenauer

Purely flavor-changing Z' bosons and where they might hide

Pheno 2017 - University of Pittsburgh

= 900

LEP

- ▶ Simulate cross section σ_{LEP}
- Construct limit from two-sided hypothesis test @ 95% CL

(日)

ELE DOG

Measuring $\tau \rightarrow \ell K \pi$

• Current limits for neutrinoless LFV τ decays [Belle, arxiv:0908.3156]

$$\Gamma_{ au
ightarrow \ell} \, \, _{h^{\pm}} \, _{h^{\prime \mp}} \lesssim (5-16) imes 10^{-8}$$

▶ For 50 ab⁻¹ of data SuperKEKB aims at a branching fraction sensitivity of 1×10^{-9} [Aushev et al., arxiv:1002.5012]

Patrick Foldenauer