Mass Dependence of Higgs Production at large P_T

Hong Zhang

In collaboration with *Eric Braaten* and *Jia-Wei Zhang*

arXiv:1704.06620

Phenomenology Symposium, University of Pittsburgh, 05/08/2017

Higgs Effective Field Theory

Standard $\mathcal{L} = -\frac{m_t}{v} \bar{t} t h$ HEFT $\mathcal{L}_{eff} = \frac{\alpha_s}{12\pi v} G^A_{\mu\nu} G^{\mu\nu,A} h$

- Eliminate the scale m_t
- Reduce the number of loops by 1.
- Inclusive Higgs production cross section from gluon fusion has been calculated to NNNLO with Higgs EFT.

Anastasiou, Duhr, Dulat, Herzog, Mistlberger, PRL 2015

• Higgs + 1 jet, NNLO

Boughezal, Focke, Giele, Liu, Petriello, PLB 2015

Higgs + ≥ 2 jet, NLO
 Campbell, Ellis

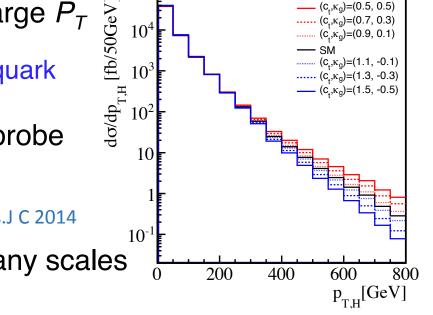
Campbell, Ellis, Williams, PRD 2010

Higgs P_T Distribution

• Higgs EFT cannot be applied to large P_T

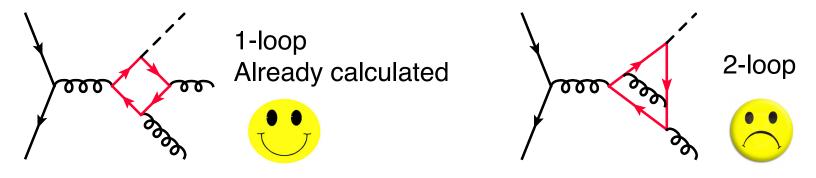
Large \sqrt{s} and P_T can resolve the *t*-quark

• Higgs at large P_T is an important probe of BSM physics.


e.g. Schlaffer et al, Eur.Phys.J C 2014

- Calculation is very difficult with many scales $(\sqrt{s}, P_T, m_t, m_H)$

Higgs P_{τ} distribution with physical top mass is available only at LO.


Ellis et.al., NPB **1988**; Baur et.al., NPB **1990**

 Lack of reliable SM prediction may compromise the search for new physics.

NLO Calculation with Massive Top

• Include both real and virtual corrections (e.g. $q\bar{q} \rightarrow H + g$) Relevant scales: \sqrt{s}, m_t, m_H

• Separate scales to simplify NLO calculation Limit 1: $2m_t \gg \sqrt{s}, m_H$ Expand in $s/4m_t^2$ and $m_H^2/4m_t^2$ HEFT Limit 2: $\sqrt{s} \gg 2m_t, m_H$ Expand in m_H^2/s and m_t^2/s Limit 3: m_t is arbitrary and $\sqrt{s} \gg m_H$ Expand in m_H^2/s An "EFT" complementary to HEFT!

Mass Singularity

- Expansion is nontrivial due to mass singularity Relevant scales: \sqrt{s}, m_t, m_H Expand in m_H^2/s and m_t^2/s
 - > Non-analytic, e.g. $\log(s/m_H^2)$
 - > Ratio of mass scales, e.g. $m_H^2/4m_t^2$

Mass Singularity

Expansion is nontrivial due to mass singularity

Relevant scales: \sqrt{s}, m_t, m_H Expand in m_H^2/s and m_t^2/s

Non-analytic, e.g. log(s/m_H²)
Ratio of mass scales, e.g. $m_H^2/4m_t^2$

Keep them untouched in the expansion

Mass Singularity

Expansion is nontrivial due to mass singularity

Relevant scales: \sqrt{s}, m_t, m_H Expand in m_H^2/s and m_t^2/s

Non-analytic, e.g. log(s/m_H²)
Ratio of mass scales, e.g. m_H²/4m_t²

Keep them untouched in the expansion

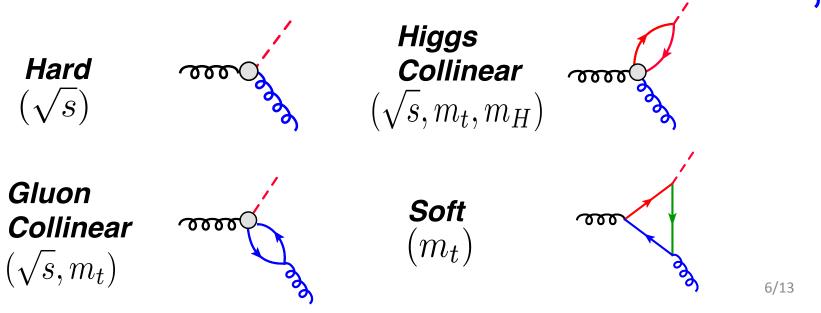

More ambitiously, we want the expansion (scale separation) • before calculating Feynman diagrams.

Each diagram is simpler to calculate due to fewer scales.

QCD factorization is a systematic framework to remove the small • mass scales.

Setup of the Calculation

- As an example, we have calculated $q\bar{q} \rightarrow H + g$ at LO
 - Easy to calculate.
 - Can compare with the full LO analytically.
- One relevant form factor at LO

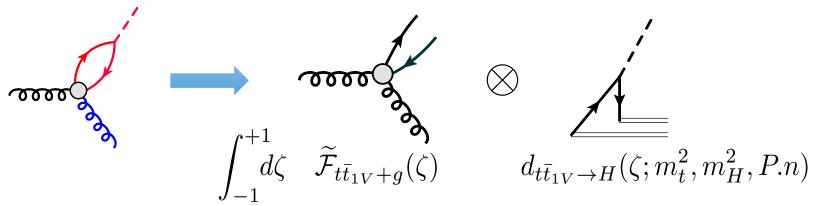


$$\frac{1}{4N_c^2} \sum |\mathcal{M}|^2 = \frac{2(N_c^2 - 1)g_s^2 m_t^2}{N_c^2} \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}(\hat{s} - m_H^2)^2} |\mathcal{F}(\hat{s}, m_t^2, m_H^2)|^2$$

Only need to separate the scales in the form factor.

Leading Regions

- The leading terms in the expansion of the full form factor are called "leading power terms (LP)".
- The regions of loop momentum integral giving LP terms are called "leading regions". First consider expanding in both m_H^2/s and m_t^2/s
- Four leading regions: $(\sqrt{s} \gg m_t, m_H)$


 P_{H}

P3

000

Factorization of Collinear Regions

Higgs Collinear Region

- Hard production of massless $t\overline{t}$ in color-singlet Lorentz-vector channel \geq Only depends on hard scale \sqrt{s}
- \blacktriangleright Collinear $t\bar{t}$ interact and produce the Higgs

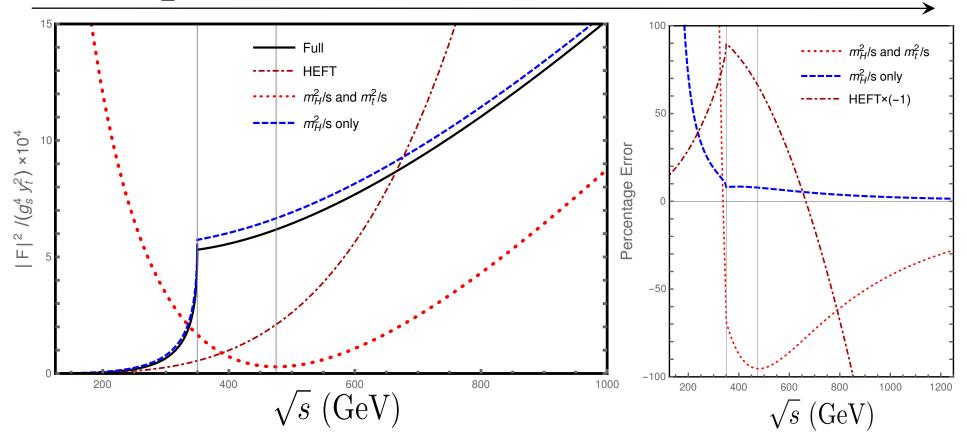
Only depends on soft scales m_t, m_H

- Integrate over the relative longitudinal momentum of $t\bar{t}$ pair
- After factorization, we separate the scales before the calculation of Feynman diagrams 7/13

Factorization Formula

• LP factorization formula (Expand by both m_H^2/s and m_t^2/s)

$$\mathcal{F}^{\text{LP}}(s, m_t^2, m_H^2) = \widetilde{\mathcal{F}}_{H+g}(s) + \int_{-1}^{+1} d\zeta \, \widetilde{\mathcal{F}}_{t\bar{t}_{1V}+g}(\zeta) \, d_{t\bar{t}_{1V}\to H}(\zeta; m_t^2, m_H^2, P.n) \\ + \int_{-1}^{+1} d\zeta \, \widetilde{\mathcal{F}}_{H+t\bar{t}_{8T}}(\zeta) \, d_{t\bar{t}_{8T}\to g}(\zeta; m_t^2, p_3.\bar{n}) + \mathcal{F}_{\text{soft}}(m_t^2)$$


- All pieces can be calculated directly from Feynman diagrams with fewer scales.
- Although the full form factor is finite, each region is divergent. Dimensional regularization and rapidity regularization are used.
- Comparing with the full form factor, all LP terms are preserved, including the mass singularities.

Improved Top Mass Dependence

- Only expand by m_H^2/s , keep m_t an arbitrary scale Don't expand in m_t^2/s or m_H^2/m_t^2
- Same factorization formula, only the hard region needs to be modified

For more details, see Braaten, HZ and Zhang, arXiv:1704.06620

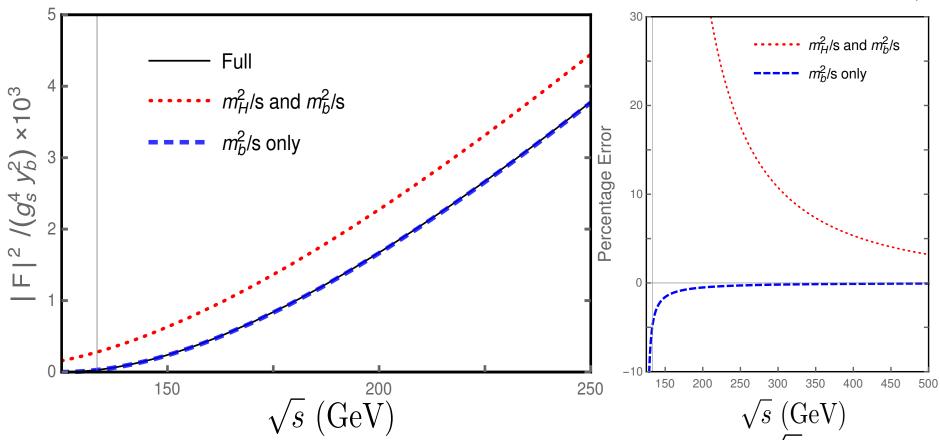
Compare with Full Result

- The error of factorization formula decreases as \sqrt{s} increases.
- Reliable prediction for all kinematic regions can be obtained by combining the factorization formula with HEFT.

10/13

Bottom Loop Contribution

 The factorization formula can also be used to calculate the contribution from a *b*-quark loop


Relevant scales: \sqrt{s}, m_H, m_b

Limit 1: Expand in both m_H^2/s and m_b^2/s

Limit 2: Expand only in m_b^2/s

- Separate the scales before calculating the Feynman diagrams. Much simpler to calculate.
- Comparing with the full form factor, all LP terms are preserved, including the mass singularities.

Compare with Full Result (b-quark loop)

- The error of factorization formula quickly decreases as \sqrt{s} increases.
- The expansion in only m_b^2/s gives a very good approximation to the full result (<10% error over all kinematic region) $_{12/13}$

Summary

- For Higgs produced at large P_T, NLO result is still unavailable 30 years after LO.
- We have proposed a factorization formula which separates different scales before calculating Feynman diagrams.
- Each piece in the factorization formula at LO is already available or easy to calculate.
- With the example $q\bar{q} \rightarrow H + g$, we show the factorization formula gives a very good approximation of the full result.
- Combined with HEFT, a reliable prediction of Higgs P_T distribution can be obtained at higher orders.
- The same method also shows great power to study the b-quark loop contribution.

Summary

- For Higgs produced at large P_T, NLO result is still unavailable 30 years after LO.
- We have proposed a factorization formula which separates different scales before calculating Feynman diagrams.
- Each piece in the factorization formula at LO is already available or easy to calculate.
- With the example $q\bar{q} \rightarrow H + g$, we show the factorization formula gives a very good approximation of the full result.
- Combined with HEFT, a reliable prediction of Higgs P_T distribution can be obtained at higher orders.
- The same method also shows great power to study the b-quark loop contribution.
 Thank you!