

J. M. No, L. Perni'e, M. Ramsey-Musolf, A. Safonov, M. Spannowsky, P. Winslow T. Huang

May 8, 2017 Pheno2017 @ Pittsburgh

AJA

Outline

- Physics motivations
 - Standard Model (SM) and beyond
 - Singlet extension of SM (xSM)
 - Resonant diHiggs production in xSM at LHC
- Analysis strategy
- Event selection: Multivariate analysis (MVA)
- Heavy Mass Estimator: solving the kinematic in presence of a neutrinos
- Expected limits on production rates
- Conclusions and Outlook

Standard Model and Beyond

The Standard Model (SM) works very well

- →It describes fundamental particles and interactions among them
- →Higgs boson, predicted in Standard Model, was discovered in 2012 by ATLAS and CMS

SM: Theory of Everything? NO Way!

- •Neutrino Masses: where do they originate from?
- Dark Matter: what are they?
- Hierarchy problem: a fine-tuned universe?
- Matter-antimatter asymmetry? namely baryogenesis: anti-baryons missing during universe evolution?

No successful model to answer all questions we will focus on extended Higgs sector

Entending the Higgs sector

Higgs sector can be extended in more than one way!!

	Model	Description	Higgs bosons	
	SM (one doublet of complex scalar fields)	3 d.o.f. give mass to W [±] and Z, Yukawa couplings generate fermion mass	h	
focus	SM + singlet (xSM)	Used in the context of EWK baryogenesis, DM	h, H	
	2HDM (contains a second doublet)	Prerequisite for SUSY, natural in GUT, DM originating from 2HDM	h, H, A, H [±]	
	2HDM + complex singlet (e.g. NMSSM)	Solve the mu-problem in MSSM (where H(125) is unnaturally heavy)	h ₁ , h ₂ , h ₃ , a ₁ , a ₂ , H [±]	
	SM + triplet	Natural explanation for small neutrino masses	h, H, A, H [±] , H ^{±±}	

Baryogenesis

- ✓ Around us: matter domains
- ✓ No anti-matter domain region in universe
 - Cosmic gamma ray and Cosmic microwave background(CMB) observations

$$\eta = \frac{n_B - n_{\bar{B}}}{\gamma} = 6 \times 10^{-10} \frac{\text{excess baryons}}{\text{photon}}$$

- Sakharov conditions: resolving baryon asymmetry
 - √ Baryon number violation
 - Sphaleron transition
 - C/CP violation
 - CKM mixing matrix in SM is too feeble, NOT enough
 - Departure from Thermal equilibrium or breakdown of CPT invariance
 - 125 GeV SM higgs only results in a smooth cross-over(or second order) ElectroWeak Phase Transition(EWPT)

smooth cross-over phase transition: early universe stays in equilibrium

2nd Order:

$$\langle \varphi \rangle = 0 \rightarrow \langle \varphi \rangle = \varphi(T)$$
 Continuous

Singlet extension of SM

SM: smooth phase transition

$$V(h,T) = a(T^2 - T_c^2)h^2 + \lambda(T)h^4$$

Add a Singlet

xSM: dramatic phase transition

$$V(h,T) = a(T^{2} - T_{c}^{2})h^{2} - E(T)h^{3} + \lambda(T)h^{4}$$

- Extending Higgs sector with new Higgs singlet
 - ✓ Significantly changed the nature and properties of EWPT in early universe —> a strong first order EWPT
 - ✓ Enhanced the sources of CP violation

Resonant DiHiggs Production at LHC

- * xSM: Singlet scalar extension of the SM
 - Two flavor Higgs bosons mixing:
 - → Higher mass: Heavy Higgs
 - → Lower mass: SM-like Higgs

- M_H>250 GeV: H−>hh, resonant diHiggs production
- Production rate: optimistic and pessimistic
- Final states: two SM Higgs decays
 - bbττ, bbww, bbγγ, bbbb...
 - We focus on bbWW→bbµvµv

More About xSM at LHC

Signal from xSM:12 benchmarks

	$\cos \theta$	m_2	Γ_{h_2}	x_0	λ	a_1	a_2	b_3	b_4	λ_{111}	λ_{211}	σ	BR
	COST	(GeV)	(GeV)	(GeV)		(GeV)	a_2	GeV	04	(GeV	(GeV)	(pb)	
B1	0.961	258	0.68	307	0.52	-266	0.26	-138	0.26	3.43	-0.70	1.19	0.50
B2	0.976	341	2.42	257	0.92	-377	0.39	-403	0.77	204	-150	0.59	0.74
В3	0.982	353	2.17	265	0.99	-400	0.45	-378	0.69	226	-144	0.44	0.76
B4	0.983	415	1.59	54.6	0.17	-642	3.80	-214	0.16	44.9	82.5	0.36	0.33
B5	0.984	455	2.08	47.4	0.18	-707	4.63	-607	0.85	46.7	93.5	0.26	0.31
B6	0.986	511	2.44	40.7	0.18	-744	5.17	-618	0.82	46.6	91.9	0.15	0.24
B7	0.988	563	2.92	40.5	0.19	-844	5.85	-151	0.08	47.1	104	0.087	0.23
B8	0.992	604	2.82	36.4	0.18	-898	7.36	-424	0.28	45.6	119	0.045	0.30
В9	0.994	662	2.97	32.9	0.17	-976	8.98	-542	0.53	44.9	132	0.023	0.33
B10	0.993	714	3.27	29.2	0.18	-941	8.28	497	0.38	44.7	112	0.017	0.20
B11	0.996	767	2.83	24.5	0.17	-920	9.87	575	0.41	42.2	114	0.0082	0.22
B12	0.994	840	4.03	21.7	0.19	-988	9.22	356	0.83	43.9	83.8	0.0068	0.079

How challenging the analysis is :

- Top pair production(tt) can have same final states

 - → $\sigma(tt) \cdot Br(\mu\nu\mu\nu bb) \sim 9.53 \text{ pb}$ → $N_{ev}(300 \text{ fb}^{-1}) \sim 3000,000 \text{ events}$
 - $\rightarrow \sigma(B_1) \cdot Br(\mu\nu\mu\nu bb) \sim 0.002 pb$
- $\rightarrow N_{ev}$ (300 fb⁻¹) \sim 600 events (0.02% N_{tt})
- $\rightarrow \sigma(B_6) \cdot Br(\mu\nu\mu\nu bb) \sim 0.0001 pb$
- $\rightarrow N_{ev}$ (300 fb⁻¹) ~ 30 events (0.001% N_{tt})
- → $\sigma(B_{12}) \cdot Br(\mu\nu\mu\nu bb) \sim 1.5e-6 \ pb \rightarrow N_{ev}(300 \ fb^{-1}) \sim 0.5 \ events \ (0.00002\% \ N_{tt})$

Introduction to LHC and CMS

LHC: Large Hadron Collider, can accelerate and collide protons at high energy and luminosity
Large Hardon Collider

- Run 2: 2015-2018
 - ► Center of mass energy = 13TeV
 - ▶ integrated luminosity ~40 fb⁻¹
 - ▶ Expected integrated luminosity ~300 fb⁻¹
- After upgrade: HL-LHC, 2023-2028
 - ▶ Instantaneous luminosity: ~5 times nominal one
 - ▶ Higher center of mass energy (14TeV)
 - ► Expected integrated luminosity ~ 3000 fb⁻¹

- CMS, Compact Muon Solenoid, is a general purpose detector on LHC, able to reconstruct all SM particles except neutrinos, which are partially estimated by momentum imbalance in transverse plane
- Delphes is used to simulate CMS response in this study

Analysis strategy

Event Preselection

- \odot 2 isolated muons (p_T>10 GeV and $|\eta|$ <2.4), opposite sign
- \odot 2 jets (P_T>30 GeV and $|\eta|$ <2.5), at least one medium+one loose btagging
 - → medium b-tagging: Eff ~75%, Mistag~1.5%
 - → loose b-tagging: Eff ~85%, Mistag~10%
- Missing Transverse Energy $(E_T^{miss}) > 20 \text{ GeV}$

Multivariate analysis (MVA) optimizing selection by boost decision tree

Heavy mass estimator (HME)

event reconstruction by solving the kinematic

SM backgrounds:

- \rightarrow Top-pair production (tt): large cross section (σ) + same final states
- \rightarrow Drell-Yan (DY): very large σ , no jets at Leading Order, and no E_Tmiss
- \rightarrow tW: small σ + same final state
- \rightarrow Non resonant hh: very small σ (negligible)

Major Background: Top-pair production (our focus)

Analysis Optimization: MVA

- Kinematic selection: before MVA
 - loose cut
 - the same for each signal benchmark point
 - efficient for signal: above 96%
 - tt efficiency: ~ 60%
- 12 kinematic variables as inputs for MVA
- Some input variables (B7 shown):

kinematic selection

Variable	Cut
$\Delta R(l,l)$	$0.07 < \Delta R(l, l) < 3.3$
$\Delta R(j,j)$	$\Delta R(j,j) < 5.0$
M(l,l)	5 < M(l, l) < 100 GeV
M(j,j)	M(j,j) > 22 GeV

MVA output: final discriminator

Heavy Mass Estimator(HME)

- 1. Mass reconstruction is not straightforward, due to the existence of two neutrinos
 - Two neutrinos contribute 6 unknown parameters
- 2. This channel provides 4 constraints
 - → Reduce 6 unknowns to 2
- 3. We randomly generate 2 unknowns
 - \rightarrow η and φ of one neutrino

$$E_{Ty} = p_y(\nu_1) + p_y(\nu_2)$$

$$\sqrt{p_4^2(\ell_1, \nu_1)} = M_W, 20 < \sqrt{p_4^2(\ell_2, \nu_2)} < 45 \text{ GeV}$$

$$(p_4(\ell_1) + p_4(\ell_2) + p_4(\nu_1) + p_4(\nu_2))^2 = M_h^2$$

- 4. If generated 2 unknowns are in kinematic allowed region, system is fully solved and we get one estimator of M_H value
 - Otherwise drop this generation
- 5. Repeat above procedure many times, and likelihood function is built in each single event according to the distribution of M_H estimator

Mass value with maximum likelihood is taken as the final M_H estimator in single event

 $E_{T_x} = p_x(\nu_1) + p_x(\nu_2)$

Heavy Mass Estimator (2)

- After preselection + MVA selection, HME is used to reconstruct events
- Resolution of HME reconstruction depends on heavy Higgs mass
- Reconstructed mass shape can largely improve analysis sensitivity
 - Powerful discriminant against tt
 - Shape analysis, rather than simple cut and count analysis

13

Expected Upper Limits

- * Expected limits are derived by asymptotic Confidence Level(CLs) method
 - → Relies on an asymptotic approximation of the distributions of the LHC test-statistic, which is based on a profile likelihood ratio
- ♣ Almost full heavy Higgs mass range exclusion with 3000 fb⁻¹
 - → Considering CMS+ATLAS (including e+mu, e+e, mu+mu)
 - → Limit is compared to the cross section from the optimistic and pessimistic predications

Impact of HME On Expected Limits

HME largely improves analysis sensitivity and analysis with HME gives a stronger constraint on xSM with same dataset

Conclusions and Outlook

- Very challenging channel, but
 - → Despite the huge background, the analysis can set upper limits up to 700 GeV
 - →5σ discovery of an eventual new resonance can be reached with 3000 fb⁻¹ data
- Competitive with other decay Channels

Future improvements:

- MVA could be further improved: advanced Neural Networks
- Make full use of HME likelihood (rather than maximum)
- Define several control regions to better estimate tt

Our Team

Texas A&M Alexei. Safonov

UMass Amherst Michael Ramsey-Musolf Jose Miguel NO

Peter Winslow

Sussex

Durham Michael Spannowsky

17

BackUp

Systematics

- Define a control region (CR) to estimate tt:
 - only a very small fraction of tt are selected
 - uncertainty on tt on QCD scale (~10-15%) affect drastically sensitivity
 - better estimation is necessary
- Scale Factors will be extracted in the CR and applied to the SR
 - → uncertainty on the SF is driven by the statistic in the CR
 - → using more CR allows to cross check the SF
 - → better to be conservative, we assume: B1-B2-B3: 3% B4: 5% B5: 10%

B6-B7-B8-B9: 12% B10-B11-B12: 15%

Signal uncertainty:

- this is just a feasibility study, No data to compute realistic systematics
- assuming general CMS systematics for Higgs searches: ~10%

Example: CMS collaboration. Phys. Lett B 752 (2016) 146,

Source of uncertainties	Error, %
Integrated luminosity	2.6%
Muon HLT	1.5%
Muon ID	4 × 1%
Muon tracking	$4 \times 0.2\%$
Overlapping in Tracker	2 × 1.2%
Overlapping in Muon System	2 × 1.3%
Dimuons mass consistency	1.5%
NNLO Higgs p_T re-weighting	2.0%
PDF+ α_s	3.0%
Total	7.3%

ElectroWeak Phase Transition and Baryogenesis

Signal cross section:

Max $\sigma \times BR$

Min $\sigma \times BR$ *

0.95

0.96

0.97

 $\cos\theta$

0.98

From Luca

1000

900

800

700

600

500

400

300

 $m_2(\text{GeV})$

Among all strong first order EWPT points, two different benchmark models have been selected: Optimistic and Pessimistic scenario

LHC is sensitive only at medium-low masses, in bbγγ. We want to improve it with bbWW

0.94

1.00

 $\tau(pb) \times BR$

Kinematic Distributions

- Signal and background have different kinematic!!!
 - e.g. Di-lepton and Di-jet invariant mass
- Make full use of kinematic distributions: Multi-variate Analysis(MVA)

MVA Performance

- MVA performs better at high mass point
 - however higher mass point has smaller production rate
- High Mass Estimator is designed to reconstruct mass shape
 - improves sensitivity of this analysis

Compact Muon Solenoid

CMS: general purpose detector on LHC: able to reconstruct all SM particles except neutrinos, which are estimated by momentum unbalance

Event Preselection

Preselection

- 2 isolated muons ($P_T>10$ GeV and $|\eta|<2.4$), opposite sign
- 2 jets ($P_T>30$ GeV and $|\eta|<2.5$)
 - → I b-tagged jet (medium working point, WP)
 - → I b-tagged jet (medium or loose working point)
- \bullet Missing Transverse Energy (E_T^{miss}) > 20 GeV

- b-tagging algorithm:
 - → In delphes eff. and mistag are parametrized (vs p_T and η)
 - → Medium WP: eff.~70%, mistag~1.5%
 - → Loose WP: eff.~85%, mistag~10%

SM backgrounds:

- \rightarrow Top-pair production (tt): large cross section (σ)
- \rightarrow Drell-Yan (DY): very large σ , no jets at Leading Order, and no E_T^{miss}
- \rightarrow tW: small σ , could produce the same final state
- \rightarrow Non resonant hh: very small σ (negligible)

Major Background: Top-pair production (our focus)

