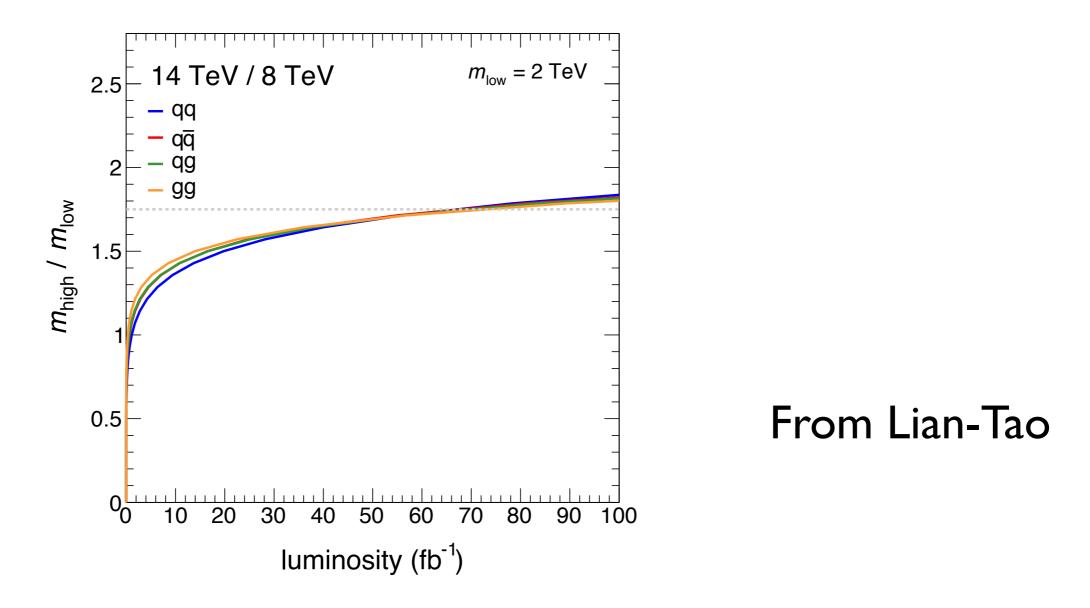
Precision measurement at the LHC

Da Liu Argonne National Laboratory

Work in collaboration with Andrea Tesi and Lian-Tao Wang

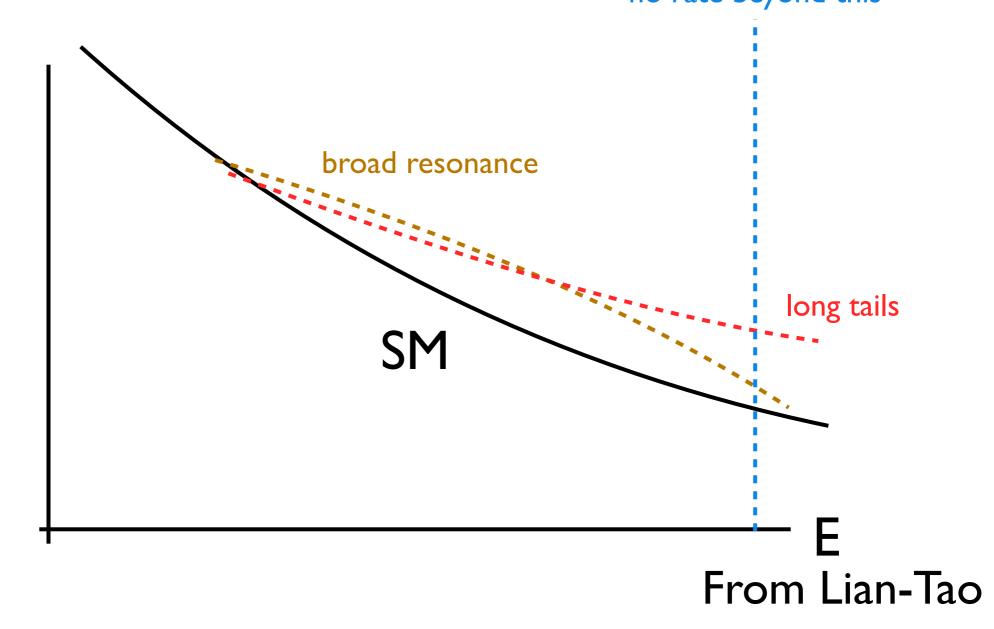
Why we do precision measurement at the LHC?

Naive scaling of the reach assuming the same number of signal events:



We have reached the slow phase for the resonance searches!

Why we do precision measurement at the LHC?



New physics may only show its tails at the LHC!

Why we do precision measurement at the LHC?

Compared with LEP, we have more energy and

Energy helps precision!

To reach the mass scale $\Lambda \sim 2 \text{ TeV}$:

$$\begin{array}{cc} \left[\begin{array}{cc} \mathsf{LEP} \end{array} \right]: & \quad \frac{\delta\sigma}{\sigma_{SM}} \sim \frac{m_Z^2}{\Lambda^2} \sim 2.1 \times 10^{-3} \\ \\ \hline \\ \left[\begin{array}{cc} \mathsf{LHC} \end{array} \right]: & \quad \frac{\delta\sigma}{\sigma_{SM}} \sim \frac{E_c^2}{\Lambda^2} \sim 0.25, \qquad E_c \sim 1 \, \mathrm{TeV} \end{array}$$

The high energy at the LHC overcome its low statistics (mainly due to systematics and reducible backgrounds)

See also Farina, Ruderman, Panico, Pappadopulo, Torre, Wulzer

$$n_{\sigma} = \sqrt{n_b + (\Delta \times n_b)^2}, \qquad n_s = n_b \left(rac{E_c}{\Lambda}
ight)^p$$

The I-sigma reach on Λ :

$$n_s = n_\sigma \Rightarrow \Lambda = E_c \times n_b^{\frac{1}{2p}}$$

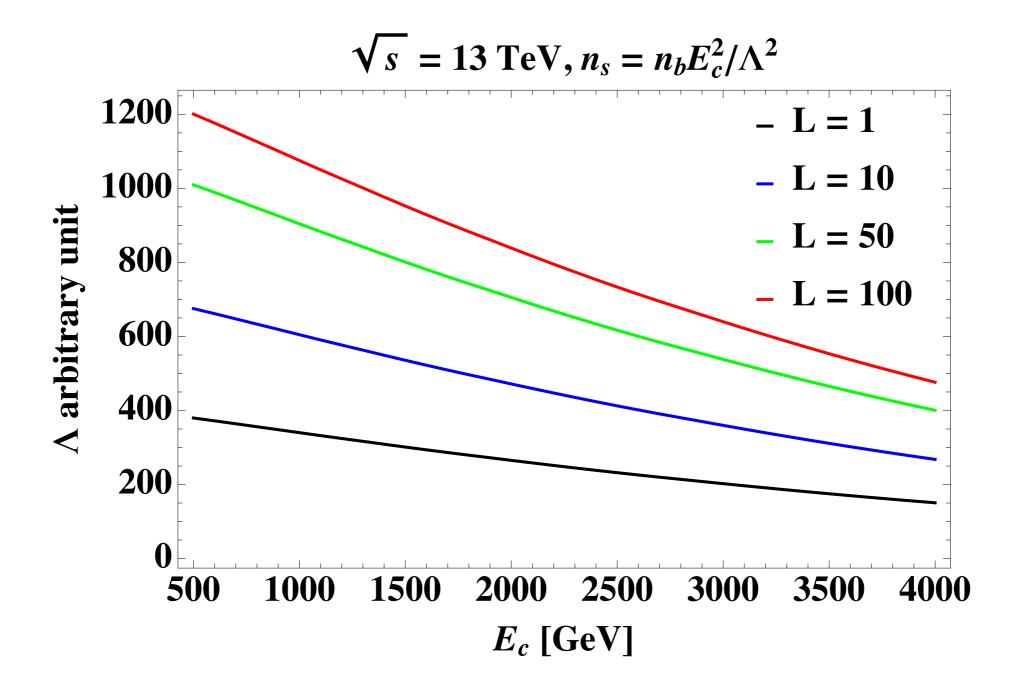
$$n_b(E_c) = \delta E_c imes rac{dL_{far{f}}}{dE_c} imes \hat{\sigma}_{far{f}}^{SM}(E_c^2)$$
 $\hat{\sigma}_{far{f}}^{SM}(E_c^2) \sim rac{1}{E_c^2}, \qquad rac{dL_{far{f}}}{dE_c} \sim rac{1}{E_c^{n_L}}$

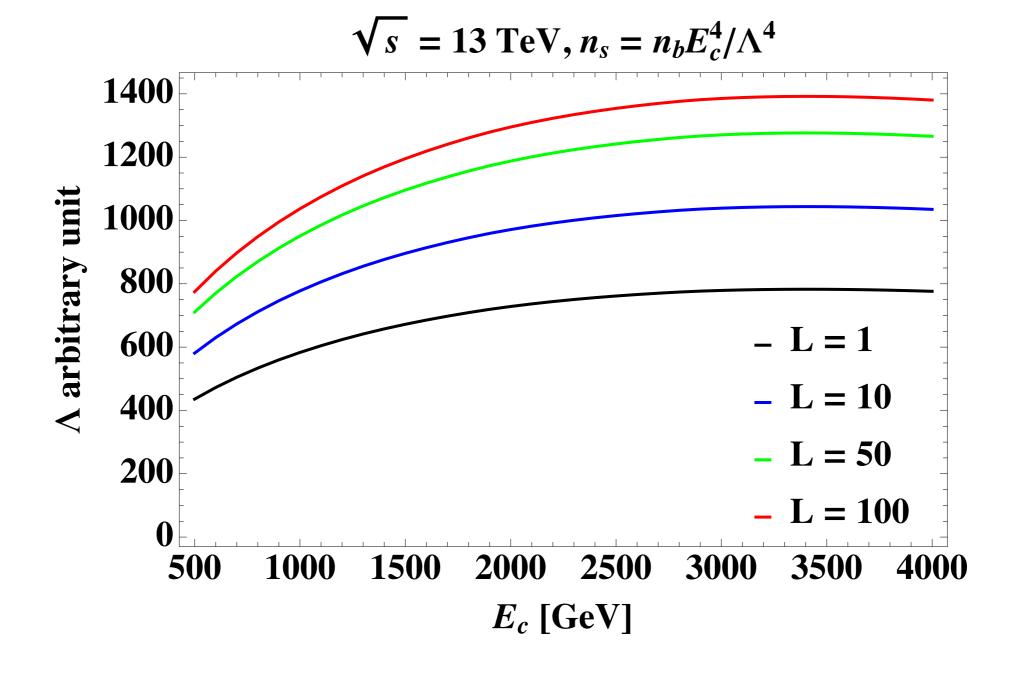
Then, we have:

$$\Lambda \sim E_c^{1-rac{n_L+2}{2p}}$$

$$\Lambda \sim E_c^{1-\frac{n_L+2}{2p}}, \qquad n_L \sim 4-5$$

- For dimension-six, p = 2, the low energy bin has the sensitivity.
- For dimension-eight, p = 4, the highest bin has the sensitivity.
- But the systematic will change the whole picture! It crucially depends on the exact number of events and thus process-dependent!





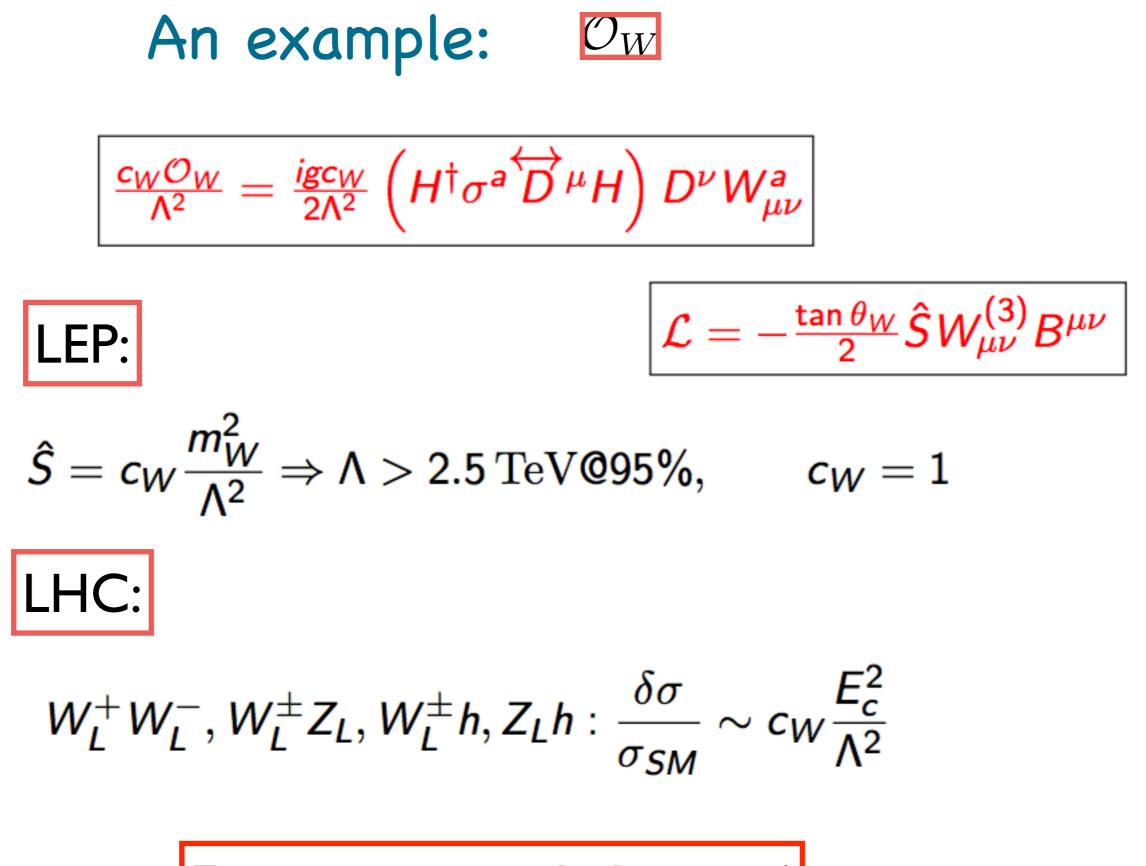
Effective Operators

The model-independent way to capture the new physics effects below the cut-off:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i \in 6} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{i \in 8} \frac{c_i}{\Lambda^4} \mathcal{O}_i$$

We are focusing on the following dimension-six operators:

$$\begin{split} \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^{a}, \qquad \mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overleftrightarrow{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} \\ \mathcal{O}_{HW} &= ig (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a}, \qquad \mathcal{O}_{HB} = ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ \mathcal{O}_{3W} &= \frac{1}{3!} g \epsilon_{abc} W_{\mu}^{a\nu} W_{\nu\rho}^{b} W^{c\rho\mu}, \qquad \mathcal{O}_{T} = \frac{g^{2}}{2} (H^{\dagger} \overleftrightarrow{D}^{\mu} H) (H^{\dagger} \overleftrightarrow{D}_{\mu}) H \\ \mathcal{O}_{R}^{u} &= ig^{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \bar{u}_{R} \gamma^{\mu} u_{R}, \qquad \mathcal{O}_{R}^{d} = ig^{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \bar{d}_{R} \gamma^{\mu} d_{R} \\ \mathcal{O}_{L}^{q} &= ig^{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \bar{Q}_{L} \gamma^{\mu} Q_{L}, \qquad \mathcal{O}_{L}^{(3)q} &= ig^{2} \left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}_{\mu} H \right) \bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L} \end{split}$$



Energy growing behaviour!

 Unfortunately, the SM WW, WZ processes are dominated by the transverse modes:

$$\sigma_{SM}^{total}/\sigma_{SM}^{LL} \sim 15-50$$
 see Pomarol (Aspen 2017)

Polarization tagging is essential to obtain bound!

For W(Z)h(bb), the reducible backgrounds are the problem:

LHC @ 8 TeV : $\sigma_b^{red}/\sigma_{SM}^{Wh} \sim 200 - 10$

None of them are easy! Here we are going to give some benchmarks!

Bounds on \mathcal{O}_W at the LEP and the HL-LHC

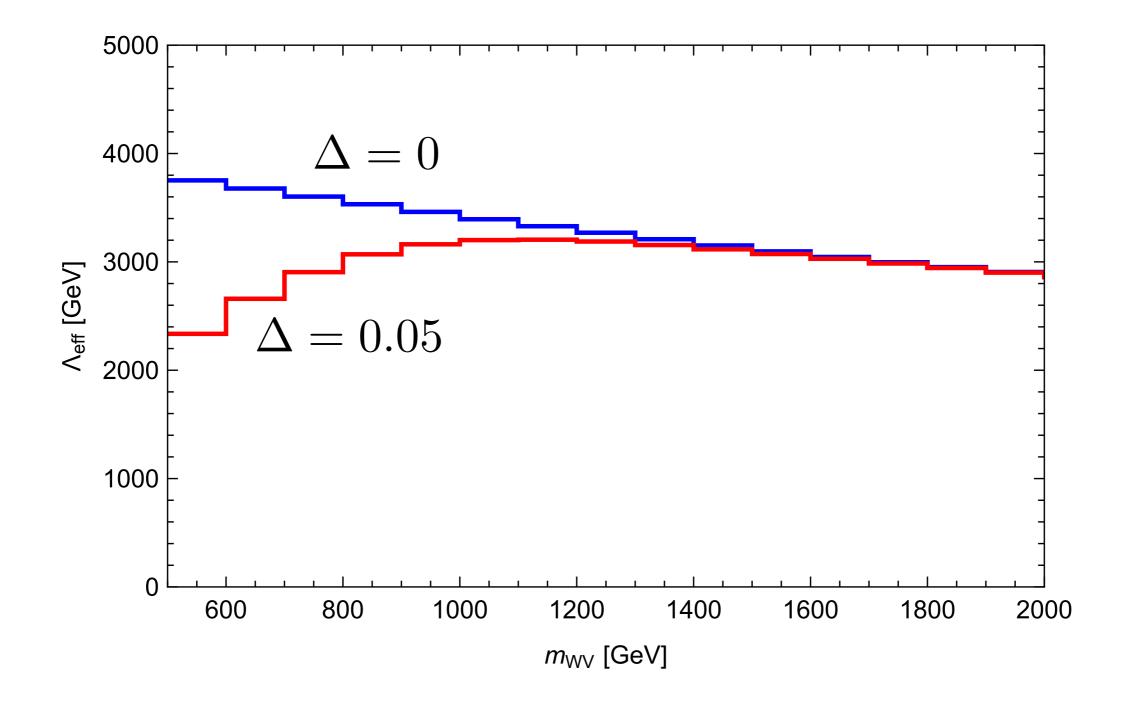
Λ[TeV] @95%	$\mathcal{O}_W, \Delta = 0$
LEP	2.5
$WV(\ell + jets)$ [0.5,1.0] TeV	(5.2,2.5,2.1)
$WV(\ell + jets)$ [1.0,1.5] TeV	(4.8,2.2,1.9)
$Zh(\nu\nu bb)[0.5,1.0]$ TeV	(3.4,2.4,1.9)
$Zh(\nu\nu bb)[1.0,1.5]$ TeV	(3.2,2.3,1.8)
<i>W</i> [±] <i>h</i> (ℓ <i>bb</i>) [0.5,1.0] TeV	(4.3,3.0,2.4)
$W^{\pm}h(\ell bb)$ [1.0,1.5] TeV	(4.0,2.9,2.3)
$W^{\pm}h(\ell + \ell u \ell u)$ [0.5,1.0] TeV	2.4
$W^{\pm}h(\ell + \ell u \ell u)$ [1.0,1.5] TeV	2.3

 $L = 3 \,\mathrm{ab}^{-1}$

The selection efficiency $\epsilon = 10\%$ for semi-leptonic channels The selection efficiency $\epsilon = 50\%$ for fully leptonic channels

$$(\epsilon_{LL} = 1.0\&\&\epsilon_{TT} = 0, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.05, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.1)$$

The role of systematics



Another example: $\mathcal{O}_L^{(3)q}$ Flavour-universal effects

$$\mathcal{O}_{L}^{(3)q} = ig^{2} \left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}_{\mu} H \right) \bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L}$$

$$\delta g_{ZbbL} = -c_L^{(3)q} \frac{2g}{\cos \theta_w} \frac{m_W^2}{\Lambda^2} \Rightarrow \Lambda > 2.2 \text{ TeV} @95\%, \qquad c_L^{(3)q} = 1$$
LHC:

$$W_L^+ W_L^-, W_L^\pm Z_L, W_L^\pm h, Z_L h : rac{\delta \sigma}{\sigma_{SM}} \sim c_L^{(3)q} rac{E_c^2}{\Lambda^2}$$

Bounds on $\mathcal{O}_L^{(3)q}$ at the LEP and the HL-LHC

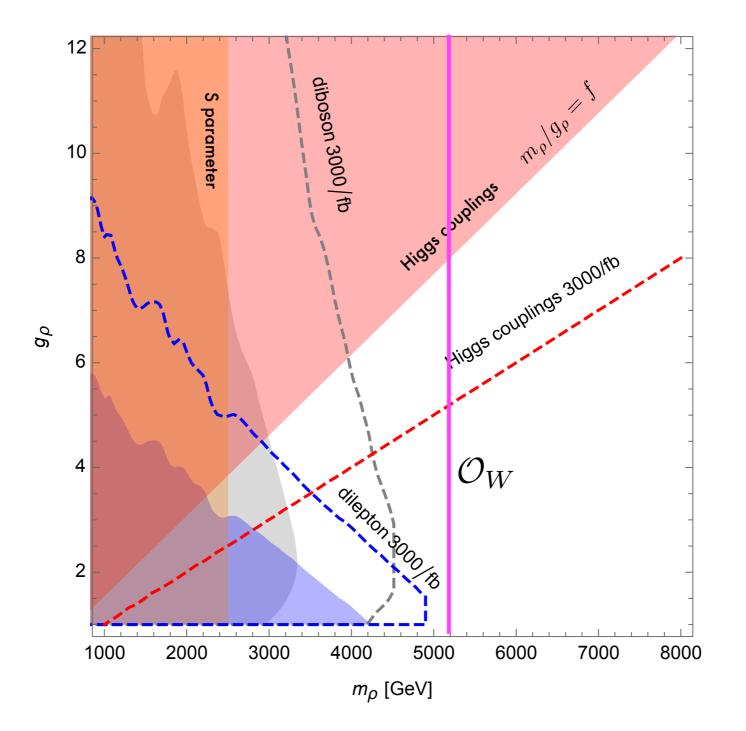
Λ[TeV] @95%	$\mathcal{O}_L^{(3)q}, \Delta = 0$
LEP	2.2
$WV(\ell + jets)$ [0.5,1.0] TeV	(3.0,2.1,1.9)
$WV(\ell + jets)$ [1.0,1.5] TeV	(3.8,2.6,2.4)
$Zh(\nu\nu bb)$ [0.5,1.0] TeV	(6.8,4.9,3.8)
$Zh(\nu\nu bb)$ [1.0,1.5] TeV	(6.3,4.6,3.7)
<i>W</i> [±] <i>h</i> (ℓ <i>bb</i>) [0.5,1.0] TeV	(8.4,5.9,4.6)
$W^{\pm}h(\ell bb)$ [1.0,1.5] TeV	(7.5,5.2,3.8)
$W^{\pm}h(\ell + \ell \nu \ell \nu)$ [0.5,1.0] TeV	4.6
$W^{\pm}h(\ell + \ell \nu \ell \nu)$ [1.0,1.5] TeV	3.8

 $L = 3 \,\mathrm{ab}^{-1}$

The selection efficiency $\epsilon = 10\%$ for semi-leptonic channels The selection efficiency $\epsilon = 50\%$ for fully leptonic channels

 $(\epsilon_{LL} = 1.0\&\&\epsilon_{TT} = 0, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.05, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.1)$

Compare with direct searches



Shaded areas: Present bounds

Dimension-8

- Gives rise to unique signals.

► ZZ, γγ.

- Can interfere with the SM in some cases where dim-6 do not.
 - ▷ e.g. $W_T W_T$, $W_T Z_T$. SM rate about 20 times $W_L W_L$.
 - Dim-6 interference with SM suppressed. Dim-8 interfere with SM. Equally important.

$${}_{8}\mathcal{O}_{TWW} = g^{2}\mathcal{T}_{f}^{\mu\nu}W_{\mu\rho}^{a}W_{\nu}^{a\rho} \qquad {}_{8}\mathcal{O}_{TBB} = g'^{2}\mathcal{T}_{f}^{\mu\nu}B_{\mu\rho}B_{\nu}^{\rho}$$
$${}_{8}\mathcal{O}_{TWB} = gg'\mathcal{T}_{f}^{a\,\mu\nu}W_{\mu\rho}^{a}B_{\nu}^{\rho}, \qquad {}_{8}\mathcal{O}_{TH} = g^{2}\mathcal{T}_{f}^{\mu\nu}D_{\mu}H^{\dagger}D_{\nu}H$$
$${}_{8}\mathcal{O}_{TH}^{(3)} = g^{2}\mathcal{T}_{f}^{a\,\mu\nu}D_{\mu}H^{\dagger}\sigma^{a}D_{\nu}H$$
$$\mathcal{T}_{f}^{\mu\nu} = \frac{i}{4}\bar{\psi}(\gamma^{\mu}\overset{\leftrightarrow}{D}^{\nu} + \gamma^{\nu}\overset{\leftrightarrow}{D}^{\mu})\psi \qquad \mathcal{T}_{f}^{a,\mu\nu} = \frac{i}{4}\bar{\psi}(\gamma^{\mu}\overset{\leftrightarrow}{D}^{\nu} + \gamma^{\nu}\overset{\leftrightarrow}{D}^{\mu})\sigma^{a}\psi$$

Summary about the Observables

Observable	$\delta\sigma/\sigma_{ m SM}$	Observable	$\delta\sigma/\sigma_{ m SM}$
\hat{S}	$(c_W+c_B)rac{m_W^2}{\Lambda^2}$	\hat{T}	$4c_T rac{m_W^2}{\Lambda^2}$
$W_L^+ W_L^-$	$\left[(c_W + c_{HW}) T_f^3 + (c_B + c_{HB}) Y_f t_w^2 \right] \frac{E_c^2}{\Lambda^2}, c_f \frac{E_c^2}{\Lambda^2}, c_{TH} \frac{E_c^4}{\Lambda^4}, c_{TH}^{(3)} \frac{E_c^4}{\Lambda^4}$	$W_T^+W_T^-$	$c_{3W}rac{m_W^2}{\Lambda^2}+c_{3W}^2rac{E_c^4}{\Lambda^4},c_{TWW}rac{E_c^4}{\Lambda^4}$
$W_L^{\pm} Z_L$	$\left(c_W + c_{HW} + 4 c_L^{(3)q} ight) rac{E_c^2}{\Lambda^2}, c_{TH}^{(3)} rac{E_c^4}{\Lambda^4}$	$W_T^+ Z_T(\gamma)$	$c_{3W}rac{m_W^2}{\Lambda^2}+c_{3W}^2rac{E_c^4}{\Lambda^4},c_{TWB}rac{E_c^4}{\Lambda^4}$
$W_L^{\pm}h$	$\left(c_W + c_{HW} + 4 c_L^{(3)q} ight) rac{E_c^2}{\Lambda^2}, c_{TH}^{(3)} rac{E_c^4}{\Lambda^4}$	Zh	$\left[(c_W + c_{HW})T_f^3 - (c_B + c_{HB})Y_f t_w^2 \right] \frac{E_c^2}{\Lambda^2}, c_f \frac{E_c^2}{\Lambda^2}$
$Z_T Z_T$	$(c_{TWW}+t_w^2 c_{TBB}-2T_f^3 t_w^2 c_{TWB})rac{E_c^4}{\Lambda^4}$	$\gamma\gamma$	$(c_{TWW} + t_w^2 c_{TBB} + 2T_f^3 t_w^2 c_{TWB}) \frac{E_c^4}{\Lambda^4}$
$h \to Z \gamma$	$(c_{HW}-c_{HB})rac{(4\pi v)^2}{\Lambda^2}$	$h \to W^+ W^-$	$(c_W+c_{HW})rac{m_W^2}{\Lambda^2}$

- LEP precision EW, high energy non-resonant WV/Vh, and Higgs measurement all relevant.
 - Sensitive to different combination of the operators.
- O_{HW} and O_{HB} contribute to $h \rightarrow Z\gamma$, expect to be relatively small in the minimal coupled theory.
- LEP limit on O_T dominant. LHC probably can't improve.

Summary about the Bounds at the LEP and the HL-LHC $L = 3 \text{ ab}^{-1}$

Λ[TeV] @95%	\mathcal{O}_W	\mathcal{O}_B	\mathcal{O}_{HW}	\mathcal{O}_{HB}
LEP	2.5	2.5	0.3	0.3
$WV(\ell + jets)$ [0.5,1.0] TeV	(5.2,2.5,2.1)	(1.5,0.77,0.67)	(5.2,2.5,2.1)	(1.5,0.77,0.67)
$WV(\ell + jets)$ [1.0,1.5] TeV	(4.8,2.2,1.9)	(1.5,0.79,0.71)	(4.8,2.2,1.9)	(1.5,0.79,0.71)
Zh(ννbb)[0.5,1.0] TeV	(3.4,2.4,1.9)	(1.2,0.90,0.74)	(3.4,2.4,1.9)	(1.2,0.90,0.74)
$Zh(\nu\nu bb)[1.0, 1.5]$ TeV	(3.2,2.3,1.8)	(1.3,0.98,0.83)	(3.2,2.3,1.8)	(1.3,0.98,0.83)
W [±] h(ℓbb) [0.5,1.0] TeV	(4.3,3.0,2.4)		(4.3,3.0,2.4)	
W [±] h(ℓbb) [1.0,1.5] TeV	(4.0,2.9,2.3)		(4.0,2.9,2.3)	
$W^{\pm} h(\ell + \ell \nu \ell \nu)$ [0.5,1.0] TeV	2.4		2.4	
$W^{\pm} h(\ell + \ell \nu \ell \nu)$ [1.0,1.5] TeV	2.3		2.3	
$h \rightarrow Z\gamma$			1.7	1.7

The selection efficiency $\epsilon = 10\%$ for semi-leptonic channels The selection efficiency $\epsilon = 50\%$ for fully leptonic channels

$$(\epsilon_{LL} = 1.0\&\&\epsilon_{TT} = 0, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.05, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.1)$$

Summary about the Bounds at the LEP and the HL-LHC $L = 3 \, {\rm ab}^{-1}$

Λ[TeV] @95%	\mathcal{O}_L^q	$\mathcal{O}_L^{(3)q}$	\mathcal{O}_R^u	\mathcal{O}_R^d
LEP	3.2	2.2	2.5	0.98
$WV(\ell + jets)$ [0.5,1.0] TeV	(4.5,2.4,2.1)	(3.0,2.1,1.9)	(3.9,2.1,1.9)	(1.6,1.2,1.2)
$WV(\ell + jets)$ [1.0,1.5] TeV	(4.7,2.6,2.3)	(3.8,2.6,2.4)	(4.0,2.2,2.0)	(2.2,1.6,1.5)
<i>Zh</i> (<i>ννbb</i>) [0.5,1.0] TeV	(2.0,1.8,1.6)	(6.8,4.9,3.8)	(3.7, 2.8,2.3)	(1.6,1.4,1.3)
$Zh(\nu\nu bb)$ [1.0,1.5] TeV	(2.7,2.4,2.2)	(6.3,4.6,3.7)	(3.9,3.0,2.5)	(2.2,1.9,1.7)
<i>W</i> [±] <i>h</i> (ℓ <i>bb</i>) [0.5,1.0] TeV		(8.4,5.9,4.6)		
W [±] h(ℓbb) [1.0,1.5] TeV		(7.5,5.2,3.8)		
$W^{\pm} h(\ell + \ell u \ell u)$ [0.5,1.0] TeV		4.6		
$W^{\pm} h(\ell + \ell u \ell u)$ [1.0,1.5] TeV		3.8		

The selection efficiency $\epsilon = 10\%$ for semi-leptonic channels The selection efficiency $\epsilon = 50\%$ for fully leptonic channels

 $(\epsilon_{LL} = 1.0\&\&\epsilon_{TT} = 0, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.05, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.1)$

Summary about the Bounds at the LEP and the HL-LHC $L = 3 \, {\rm ab}^{-1}$

$\Lambda [\text{TeV}]$	\mathcal{O}_{3W}	\mathcal{O}_{TWW}	\mathcal{O}_{TWB}	\mathcal{O}_{TH}	$\mathcal{O}_{TH}^{(3)}$
LEP	0.4				
$WV(\ell + jets)$	1.2	0.90	0.90	(1.1, 0.87, 0.83)	(0.83, 0.67, 0.65)
$W^{\pm}h(\ell bb)$					(0.86, 0.79, 0.76)
$W^{\pm}h(\ell+\ell u\ell u)$					0.74
$ZZ(4\ell)$		1.4	0.71		
$ZZ(2\ell 2j)$		1.6	0.76		
$W^{\pm}\gamma(\ell+\gamma)$	1.3		1.4		
$Z\gamma(\ell\ell+\gamma)$		1.5	1.1		
$Z\gamma(u u+\gamma)$		1.4	1.0		
$\gamma\gamma$		2.0	1.6		

The selection efficiency $\epsilon = 10\%$ for semi-leptonic channels The selection efficiency $\epsilon = 50\%$ for fully leptonic channels

 $(\epsilon_{LL} = 1.0\&\&\epsilon_{TT} = 0, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.05, \epsilon_{LL} = 0.5\&\&\epsilon_{TT} = 0.1)$

Conclusion

- New physics may only show its tail at the LHC, it is important to do the precision measurement.
- The EFT is a convenient and model-independent way to capture the effects.
- With high energy at hand, LHC can beat LEP precision.
- Non-resonant, broad features. Difficult. But a lot data can make a significant difference here!

Helicity structure

 $f_L \bar{f}_R \to W^+ W^-$

$\boxed{(h_{W^+},h_{W^-})}$	SM	\mathcal{O}_W	\mathcal{O}_{HW}	\mathcal{O}_{HB}	\mathcal{O}_B	\mathcal{O}_{3W}	\mathcal{O}_{TWW}
(\pm,\mp)	1	0	0	0	0	0	$\frac{E^4}{\Lambda^4}$
(0,0)	1	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	0	$\frac{E^4}{\Lambda^4} \frac{m_W^2}{E^2}$
$(0,\pm),(\pm,0)$	$\frac{m_W}{E}$	$\frac{E^2}{\Lambda^2} \frac{m_W}{E}$	$\frac{\overline{E}^4}{\Lambda^4} \frac{\overline{m}_W}{\overline{E}}$				
(\pm,\pm)	$\frac{m_W^2}{E^2}$	$rac{m_W^2}{\Lambda^2}$	$rac{m_W^2}{\Lambda^2}$	0	0	$\frac{E^2}{\Lambda^2}$	$\frac{E^4}{\Lambda^4} \frac{m_W^2}{E^2}$

 $f_R \bar{f}_L \to W^+ W^-$

(h_{W^+},h_{W^-})	SM	\mathcal{O}_W	\mathcal{O}_{HW}	\mathcal{O}_{HB}	\mathcal{O}_B	\mathcal{O}_{3W}	\mathcal{O}_{TWW}
(\pm,\mp)	0	0	0	0	0	0	$\frac{E^4}{\Lambda^4}$
(0,0)	1	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	$\frac{E^2}{\Lambda^2}$	0	$\frac{E^4}{\Lambda^4} \frac{m_W^2}{E^2}$
$(0,\pm),(\pm,0)$	$\frac{m_W}{E}$	$\frac{E^2}{\Lambda^2} \frac{m_W}{E}$	$\frac{E^2}{\Lambda^2} \frac{m_W}{E}$	$\frac{E^2}{\Lambda^2} \frac{m_W}{E}$	$\frac{E^2}{\Lambda^2} \frac{m_W}{E}$	$\frac{m_W^2}{\Lambda^2} \frac{m_W}{E}$	$\frac{E^4}{\Lambda^4} \frac{m_W}{E}$
(\pm,\pm)	$\frac{m_W^2}{E^2}$	$\frac{m_W^2}{\Lambda^2}$	$\frac{m_W^2}{\Lambda^2}$	0	0	$\frac{m_W^2}{\Lambda^2}$	$\frac{E^4}{\Lambda^4} \frac{m_W^2}{E^2}$

- Whether interference or not depends on polarization of WW. Polarization differentiation can be crucial.

SM di-boson rates

	WZ		WW		Wh		Zh	
Polarizations	8 TeV	13 TeV	8 TeV	13 TeV	8 TeV	13 TeV	8 TeV	$13 { m TeV}$
σ_{LL}	0.78 pb						0.12 pb	
σ_{LT+TL}	2.3 pb	4.4 pb	7.5 pb	12.6 pb	0.25 pb	0.50 pb	0.14 pb	$0.28 \mathrm{\ pb}$
σ_{TT}	9.3 pb	18.2 pb	24.4 pb	47.0 pb	_	_	_	_

	Z	Z	$Z \qquad \parallel \qquad W\gamma \qquad \parallel$		$Z\gamma$		$\gamma\gamma$	
Polarizations	8 TeV	13 TeV	8 TeV	13 TeV	8 TeV	13 TeV	8 TeV	$13 { m TeV}$
σ_{LL}	0.28 pb	0.52 pb	_	—	_	_	_	_
σ_{LT+TL}	1.1 pb	2.0 pb	9.9 pb	15.6 pb	11.5 pb	17.6 pb	_	_
σ_{TT}	3.2 pb	6.3 pb	47.8 pb	79.5 pb	32.8 pb	52.9 pb	117 pb	160 pb

From MadGraph LO