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Jet Substructure  
Substructures help background reduction + classification of jets  
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FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both

jet substructure ideas [24–39], with pile-up suppression becoming increasingly important at

higher luminosities. With the recent discovery of a Higgs-like particle [40, 41], jet substructure

methods for identifying the H ! bb̄ decay mode [5] (and potentially the H ! gg decay mode)

could be vital for testing Higgs properties.

A common strategy for jet substructure studies is to first identity subjets, namely, local-

ized subclusters of energy within a jet. Jet discrimination then involves studying the prop-

erties of and relationship between the subjets. For example, BDRS [5] and related methods

[8, 42, 43] involve first reclustering the jet with the Cambridge/Aachen [44–46] or k
T

[47, 48]

jet algorithm and then stepping through the clustering history to identify a hard splitting in

the jet; pruning [12] is similar. N -subjettiness [49, 50] relies on a (quasi-)minimization pro-

cedure to identify N subjet directions in the jet. Of course, there are jet shapes such as jet

angularities [9, 51], planar flow [7, 9], Zernike coe�cients [52], and Fox-Wolfram moments [53]

that can be used for classifying jets without subjet finding. Considered individually, however,

these jet shapes tend not to yield the same discrimination power as subjet methods, since

they are sensitive mainly to exotic kinematic configurations and not directly to prong-like

substructure.

In this paper, we introduce generalized energy correlation functions that can identify

N -prong jet substructure without requiring a subjet finding procedure. These correlators

only use information about the energies and pair-wise angles of particles within a jet, but

yield discrimination power comparable to methods based on subjets. As we will see, (N +1)-

point correlation functions are sensitive to N -prong substructure, with an angular exponent

� that can be adjusted to optimize the discrimination power. To our knowledge, the 2-point

correlators—schematically
P

i,j

E
i

E
j

✓�
ij

where the sum runs over all particles i and j in a jet

or event—first appeared in Ref. [54] and independently in Ref. [55], with no previous studies

of higher-point correlators.1

Besides the novelty of not requiring subjet finding, a key feature of the generalized energy

correlation functions is that the angular exponent � can be set to any value consistent with

infrared and collinear safety, namely � > 0. In contrast, observables like angularities [9, 51]

are required to have � > 1 to avoid being dominated by recoil e↵ects.2 By choosing values

of � ' 0.2, the correlators are able to more e↵ectively probe small-scale collinear splittings,

which will turn out to be useful for quark/gluon discrimination.

To put our work in perspective, it is worth remembering that the basic idea for using

energy correlation functions to determine the number of jets in an event is actually quite old.

As we will review, the C-parameter for e+e� collisions [61, 62] is essentially a 3-point energy

correlation function that can be used to identify events that have two jets. However, the

C-parameter is defined as a function of the eigenvalues of the sphericity tensor and therefore

1Our definition of the energy correlation function should not be confused with Refs. [56–59], which refer to

an ensemble average of products of energies measured at fixed angles. Here, energy correlation functions are

measured on an event-by-event basis.
2As will be discussed in Sec. 2.2 and a forthcoming publication [60], N -subjettiness may or may not have

recoil sensitivity depending on how the axes are chosen.
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Classic Example

 Remove UE/Pile up  contamination through pruning/filtering 
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Jet substructure as a new Higgs search channel at the LHC

Jonathan M. Butterworth, Adam R. Davison
Department of Physics & Astronomy, University College London.

Mathieu Rubin, Gavin P. Salam
LPTHE; UPMC Univ. Paris 6; Univ. Denis Diderot; CNRS UMR 7589; Paris, France.

It is widely considered that, for Higgs boson searches at the Large Hadron Collider, WH and ZH
production where the Higgs boson decays to bb̄ are poor search channels due to large backgrounds.
We show that at high transverse momenta, employing state-of-the-art jet reconstruction and decom-
position techniques, these processes can be recovered as promising search channels for the standard
model Higgs boson around 120 GeV in mass.

A key aim of the Large Hadron Collider (LHC) at
CERN is to discover the Higgs boson, the particle at the
heart of the standard-model (SM) electroweak symmetry
breaking mechanism. Current electroweak fits, together
with the LEP exclusion limit, favour a light Higgs boson,
i.e. one around 120 GeV in mass [1]. This mass region
is particularly challenging for the LHC experiments, and
any SM Higgs-boson discovery is expected to rely on a
combination of several search channels, including gluon
fusion → H → γγ, vector boson fusion, and associated
production with tt̄ pairs [2, 3].

Two significant channels that have generally been con-
sidered less promising are those of Higgs-boson produc-
tion in association with a vector boson, pp → WH , ZH ,
followed by the dominant light Higgs boson decay, to two
b-tagged jets. If there were a way to recover the WH and
ZH channels it could have a significant impact on Higgs
boson searches at the LHC. Furthermore these two chan-
nels also provide unique information on the couplings of
a light Higgs boson separately to W and Z bosons.

Reconstructing W or Z associated H → bb̄ production
would typically involve identifying a leptonically decay-
ing vector boson, plus two jets tagged as containing b-
mesons. Two major difficulties arise in a normal search
scenario. The first is related to detector acceptance: lep-
tons and b-jets can be effectively tagged only if they are
reasonably central and of sufficiently high transverse mo-
mentum. The relatively low mass of the V H (i.e. WH or
ZH) system means that in practice it can be produced
at rapidities somewhat beyond the acceptance, and it is
also not unusual for one or more of the decay products
to have too small a transverse momentum. The second
issue is the presence of large backgrounds with intrin-
sic scales close to a light Higgs mass. For example, tt̄
events can produce a leptonically decaying W , and in
each top-quark rest frame, the b-quark has an energy of
∼ 65 GeV, a value uncomfortably close to the mH/2 that
comes from a decaying light Higgs boson. If the second
W -boson decays along the beam direction, then such a
tt̄ event can be hard to distinguish from a WH signal
event.

In this letter we investigate V H production in a
boosted regime, in which both bosons have large trans-
verse momenta and are back-to-back. This region cor-

responds to only a small fraction of the total V H cross
section (about 5% for pT > 200 GeV), but it has several
compensating advantages: (i) in terms of acceptance, the
larger mass of the V H system causes it to be central, and
the transversely boosted kinematics of the V and H en-
sures that their decay products will have sufficiently large
transverse momenta to be tagged; (ii) in terms of back-
grounds, it is impossible for example for an event with
on-shell top-quarks to produce a high-pT bb̄ system and
a compensating leptonically decaying W , without there
also being significant additional jet activity; (iii) the HZ
with Z → νν̄ channel becomes visible because of the large
missing transverse energy.

One of the keys to successfully exploiting the boosted
V H channels will lie in the use of jet-finding geared to
identifying the characteristic structure of a fast-moving
Higgs boson that decays to b and b̄ in a common neigh-
bourhood in angle. We will therefore start by describing
the method we adopt for this, which builds on previous
work on heavy Higgs decays to boosted W’s [4], WW
scattering at high energies [5] and the analysis of SUSY
decay chains [6]. We shall then proceed to discuss event
generation, our precise cuts and finally show our results.

When a fast-moving Higgs boson decays, it produces
a single fat jet containing two b quarks. A successful
identification strategy should flexibly adapt to the fact
that the bb̄ angular separation will vary significantly with
the Higgs pT and decay orientation, roughly

Rbb̄ ≃
1

√

z(1 − z)

mh

pT
, (pT ≫ mh) , (1)

where z, 1 − z are the momentum fractions of the two
quarks. In particular one should capture the b, b̄ and any
gluons they emit, while discarding as much contamina-
tion as possible from the underlying event (UE), in order
to maximise resolution on the jet mass. One should also
correlate the momentum structure with the directions of
the two b-quarks, and provide a way of placing effective
cuts on the z fractions, both of these aspects serving to
eliminate backgrounds.

To flexibly resolve different angular scales we use the
inclusive, longitudinally invariant Cambridge/Aachen
(C/A) algorithm [7, 8]: one calculates the angular dis-
tance ∆R2

ij = (yi − yj)2 + (φi − φj)2 between all pairs of

Find local subclusters of energy within a jet 

Step through clustering history to identify a hard splitting 

Related ideas 
N-Subjettiness -> Quasi-minimization of N-point sub-structure 
Q-Jets -> Tree based substructure to reduce fluctuations in the pruned jet 
mass

“BDRS” 0802.4280,

Thaler, Van Tilburg, Ellis, Schwartz, Krohn, Horning, Roy



Jet Substructure for “light” leptophobic V’ resonances
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allowed, but U can decay via renormalizable in-

teractions only if there is at least one additional

field (e.g., a scalar S which is a SM gauge sin-

glet, has U(1)B charge 0, and interacts through

ūRULS).

The D=U and D=7U+3 models are identical

for z = −1/(2n). In this case, a second scalar

φ′, of U(1)B charge 1/3 − 1/(2n), is necessary

to allow Q, U , and D decays through q̄LQRφ′,

ūRULφ′ and d̄RDLφ′, respectively.

The choice of vectorlike fermions shown in Ta-

ble I is simple but not unique. For example,

anomaly cancellation in the presence of vector-

like leptons instead of quarks is also possible [38].

A fourth generation of chiral quarks and leptons

can also lead to the cancellation of the U(1)B

anomalies [39], but this possibility is nearly ruled

out [36] now by the measurements of Higgs pro-

duction through gluon fusion [40], and by direct

searches for t′ [41] and b′ [42] quarks at the LHC.

The couplings of the Z ′
B to SM quarks are

given by

gB
6
Z ′
Bµ qγ

µq , (6)

where gB is the U(1)B gauge coupling (using the

normalization where the group generator is 1/2),

and is related to the coupling constant, as usual,

by αB = g2B/(4π). The Z ′
B can decay into a pair

of jets (including b jets) or into a tt̄ pair (for a

Z ′
B mass MZ′

B
> 2mt), with partial decay widths

given by

Γ
(

Z ′
B→ jj

)

=
5αB

36
MZ′

B

(

1 +
αs

π

)

,
(7)

Γ(Z ′
B→ tt̄)

Γ
(

Z ′
B→ jj

) =
1

5

(

1−
4m2

t

M2

Z′
B

)1/2[

1+O

(

αsmt

MZ′
B

)]

.

Here we have included the NLO QCD corrections

and no electroweak corrections. If the decays into

vectorlike quarks are kinematically closed, then

the total width of Z ′
B is

ΓZ′
B
= Γ

(

Z ′
B → jj

)

+ Γ
(

Z ′
B → tt̄

)

. (8)

B. Coloron

Another hypothetical particle that can easily

produce dijet resonances with large cross section

at the LHC is the coloron [32], a spin-1 color-

octet gauge boson. The coloron, in the case of

flavor-universal couplings [33], is not significantly

constrained by flavor processes nor by other low

energy data. Furthermore, the coloron is auto-

matically leptophobic.

The simplest gauge symmetry that can be as-

sociated with a heavy color-octet vector boson is

SU(3)1×SU(3)2 [43]. This is spontaneously bro-

ken down to the diagonal SU(3)c gauge group,

which is identified with the QCD one. A min-

imal renormalizable extension of the SM which

includes a coloron, dubbed ReCoM, is analyzed

in Ref. [34]. Assuming that all the SM quarks

transform as (3, 1) under SU(3)1 × SU(3)2, the

couplings of the coloron to SM quarks are given

Leptophobic Z’
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Look at leptonic mode   
Use BDRS to reconstruct Z’ 
R=1.5 , Pt > 100 GeV 

Principle backgrounds : W/Z + jets/ tt + jets,WW, ZZ,WZ    

with a smaller cone radius as compared to higher mass points. However, in this work we choose a

constant radius of 1.5 that captures the essential features of this analysis. The principal backgrounds

this analsysi are the W (! `⌫) +2 jet and tt̄. The subdominant backgrounds are Z (`+`�) + 2 jet,

WW/Wh/Zh production (for lower masses). While the rest of the backgrounds are relevant only in

the situation that jets and leptons are missed, the W+ 2 jet background is the irreducible part in this

analysis. To optimize the signal to background ratio, the following cuts are applied

• A single lepton and is selected with a pT threshold of 10 GeV and isolated with respect to tracks

within a cone of 0.1.

• A b-jet veto to discriminate against the tt̄ background.

• p/T � 100 GeV.

• cos ✓(jj, lp/T) < 0.

• HT = ⌃pT + l + p/T > 500 GeV.

• An invariant mass cut on the fat jet. This depends on the mass of the Z 0. We choose a cut of

MZ0 ± 20 GeV.

For the three mass points for Z 0, with masses of 100, 200 and 250 GeV, and a coupling gB = 1 the

results are documented in Table 4. The cutflow is normalized to cross section in fb. From the cutflow

we reaalize as expected that the maximum e�ciency of the BDRS tagger is at lower masses, at around

250 GeV. The e�ciency of the tagging algorithm falls as the mass increases, as expected, due to lower

boost factor. In fig 3, we plot the 2 � exclusion and 5 � discovery contours in the mass range 100

GeV-300 GeV. We find that at 300 fb�1 luminosity, gB = 0.9 can be ruled out for masses of around

100 GeV, which rises to 1.2 for a mass of 300 GeV. Incidentally, while this document was prepared,

CMS performed an analysis with 2.7 fb�1 worth luminosity at 13 TeV in the Z 0+j channel. Since this

cross section is significantly larger than the one in consideration here, this region of parameter space

could be accessed more easily in this channel. Due to the di�culty of simulating QCD background

faithfully in monte carlo, we do not perform the analysis in this channel for high luminosity LHC.

However we emphasize that this is a complementary channel to look for leptophobic Z’.

Given the usefulness of the BDRS tagger at 13 TeV, we make an assessment of the potential at

the 100 TeV future collider. We expect the jets to be more boosted at 100 TeV, and thus a wider

mass range could be probed using the substructure technique. Since the detector parameters are not

certain, we only simulate events up to the hadron level, to make a tentative assesment. We simulate

monte carlo events at 100 TeV collider within the mass range 500 GeV to 3 TeV following the same

procedure as 13 TeV. The cut on HT , while generating parton level events was raised to 400 GeV.

Additionally parton level events were generated within a mass range MZ0 ± 100 GeV. We follow

the same cutflow structure as described for 13 TeV. The HT cut was however raised to 1200 GeV,

while the invariant mass of the subjets after employing the BDRS tagger was set to MZ0 ± 100 GeV .

We observed that while the jet substructure method was fairly e�cient within the mass range ⇠ 500

GeV–1000 GeV, the e�ciency for higher masses was extremely limited. Note that this is a preliminary

– 3 –

Analysis cuts



Z’ Resonance Limits - Dijet and Associated Production
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However the Z’ + jet channel is more effective due larger  C.S

• However the Z’ + jet channel is more effective due 
larger  cross section. 

• Use of substructure by CMS has already yielded 
impressive bounds in the low mass region 

2 3 Event reconstruction, simulation and selection

QCD scaling sideband method where the events failing the mass and substructure require-
ments are used to predict the jet mass distribution from QCD in the signal region. Standard
model (SM) candles from the W and Z inclusive processes, also produced in association with
a high transverse momentum ISR jet, have a very similar topology to the Z’ signal. They are
used to validate the analysis method as a signal proxy and further constrain systematic effects
related to a potential signal. Section 5 describes the systematic uncertainties for the background
and signal contributions. This includes a validation of the Z’ tagging techniques using merged
jets from W bosons in tt̄ events. Finally, in Section 6, limits are set in the gB coupling-mass
plane in the 100-300 GeV mass range.

Z �

q

q̄

g

q̄

q

1

Figure 1: An example Feynman diagram of a Z0 ! qq̄ resonance production with an initial-
state radiation gluon.

2 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapidity [38] coverage provided by the
barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the
steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector,
together with a definition of the coordinate system used and the relevant kinematic variables,
can be found in Ref. [38].

3 Event reconstruction, simulation and selection

This study uses proton-proton collision events from the 2015 Run 2 dataset corresponding to
2.7 fb�1 at

p
s = 13 TeV. Events are selected using a two-tier trigger system. Events satisfying

loose jet requirements at the first level (L1) are examined by the high-level trigger (HLT). We use
a logical ”OR” of the following HLT trigger requirements which make a selection on the total
hadronic transverse energy in the event (HT) and, in some cases, in conjunction with a selection
on the mass of the jet after cleaning it of soft radiation with the jet trimming technique [39]
(mtrimmed):

Jet Substructure for Light Z’ resonances

10 7 Summary

Z' mass (GeV)
100 150 200 250 300

 A
 (p

b)
× 

σ

410

510

CMSPreliminary  (13 TeV)-12.7 fb

expected
observed

σexpected 2
σexpected 1

 = 1
B

theory, g
 = 0.5

B
theory, g

Z' mass (GeV)
80 100 200 300 400 500

B
co

up
lin

g,
 g

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
CMSPreliminary  (13 TeV)-12.7 fb

expected
observed

σexpected 2
σexpected 1

UA2
CDF Run 1
CDF Run 2

-1 20.3  fb⊕ATLAS 13 
)γ (ISR -1 3.2 fb⊕ATLAS 13 

 (TLA)-1 3.2 fb⊕ATLAS 13 
 (Scouting)-1 18.8 fb⊕CMS 8 

Figure 7: 95% confidence level upper limit on the Z’ production cross section compared to the
theoretical cross section for a Z’ with gB = 0.5, 1 (top) and the translation of that upper limit
to a limit on gB (bottom). Limits from other relevant searches are also shown. Recent ATLAS
results from Run 2 in [26, 36] are scaled to the coupling gB.

Expect significant improvement
 at high luminosity 



From Jet substructures to Energy Correlators

•Energy Correlation functions are an alternative 
measure of jet substructure 

•No need to identify “subjet” regions 
individually 

•Better probes of soft and collinear features - 
radiation



Jet Energy Correlators : Definition, part I

Vanish in the soft and collinear limit 
(alternative definition in  
transverse momentum) 

For an “N-jet” event, ECF(N,β) 
maximal

Larkoski, Salam, Thaler :1305.0007

only gives sensible values for systems that have zero total momentum and for events that are

nearly dijet-like. In contrast, our generalized energy correlation functions give sensible results

in any Lorentz frame and can be used to identify any number of jets in an event (or subjets

within a jet). In addition, they can be defined in any number of spacetime dimensions.
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N
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(�)

N

with N -subjettiness ratios. We then

present three case studies to show how these generalized energy correlation functions work

for di↵erent types of jet discrimination.

• Quark/gluon discrimination. Using C
(�)

1

(built from the 2-point correlator) in Sec. 3,

we perform both an analytic study and a Monte Carlo study of quark/gluon separation.

Through a next-to-leading logarithmic study, we explain why quark/gluon discrimi-
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(�)

2

(built from the 3-point correlator) in
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(�)

3

(built from the 4-point correlator) in Sec. 5,
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that a boosted top event can be analyzed for a single value of � in a few milliseconds.
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functions are available as an add-on to FastJet 3 [63] as part of the FastJet contrib project

(http://fastjet.hepforge.org/contrib/).

2 Generalized Energy Correlation Functions

The basis for our analysis is the N -point energy correlation function (ECF)
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Here, the sum runs over all particles within the system J (either a jet or the whole event).

Each term consists of N energies multiplied together with
�

N

2

�
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Jet Energy Correlators : Definition, part II

First, define the ratio

angular exponent �. This function is well-defined in any number of space-time dimensions

as well as for systems that do not have zero total momentum. Note that it is infrared and

collinear (IRC) safe for all � > 0. Moreover, ECF(N,�) goes to zero in all possible soft and

collinear limits of N partons.

As written, Eq. (2.1) is most appropriate for e+e� colliders where energies and angles

are the usual experimental observables. For hadron colliders, it is more natural to define

ECF(N,�) as a transverse momentum correlation function:3
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where R
ij

is the Euclidean distance between i and j in the rapidity-azimuth angle plane,
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. In this paper, we will only consider up to

4-point correlation functions:
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If a jet has fewer than N constituents then ECF(N,�) = 0. Note that the computational

cost for ECF(N,�) with k particles scales like kN/N !.

From the ECF(N,�), we would like to define a dimensionless observable that can be

used to determine if a system has N subjets. The key observation is that the (N + 1)-

point correlators go to zero if there are only N particles. More generally, if a system has N

subjets, then ECF(N + 1,�) should be significantly smaller than ECF(N,�). One potentially

interesting ratio is

r
(�)

N

⌘ ECF(N + 1,�)

ECF(N,�)
, (2.8)

which behaves much like N -subjettiness ⌧
N

in that for a system of N partons plus soft

radiation, the observable is linear in the energy of the soft radiation.4 Of course, this is but

one choice for an interesting combination of the energy correlation functions, and one can

imagine using the whole set of energy correlation functions in a multivariate analysis.

3We will continue to use the notation ECF, though we will mainly use the transverse momentum version

in this paper.
4Unlike N -subjettiness, this ratio scales like �1�N� under transverse Lorentz boosts �, which is somewhat

undesirable when considering systems with several subjets.
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(small) determines if an N-pronged decay  has N-subjets 

Finally, define the dimensionless double ratio : 
In this paper, we will work exclusively with the energy correlation double ratio

C
(�)

N

⌘ r
(�)

N

r
(�)

N�1

=
ECF(N + 1,�) ECF(N � 1,�)

ECF(N,�)2
, (2.9)

which is dimensionless.5 One way to motivate this observable is that we already know that

N -subjettiness ratios ⌧
N

/⌧
N�1

are good probes of N -prong substructure [49, 50]. As we will

see, the notation “C” is motivated by the fact that this variable generalizes the C-parameter

[61, 62]. One should keep in mind that C
(�)

N

involves (N + 1)-point correlators, and when

clear from context, we will drop the (�) superscript.

The energy correlation double ratio C
N

e↵ectively measures higher-order radiation from

leading order (LO) substructure. For a system with N subjets, the LO substructure consists

of N hard prongs, so if C
N

is small, then the higher-order radiation must be soft or collinear

with respect to the LO structure. If C
N

is large, then the higher-order radiation is not

strongly-ordered with respect to the LO structure, so the system has more than N subjets.

Thus, if C
N

is small and C
N�1

is large, then we can say that a system has N subjets. In

this way, the energy correlation double ratio C
N

behaves like N -subjettiness ratios ⌧
N

/⌧
N�1

,

with key advantages to be discussed in Sec. 2.2.

2.1 Relationship to Previous Observables

While the definition of the energy correlation double ratio C
N

is new, it is related to previous

observables for e+e� and hadron colliders that have been studied in great detail.

An energy-energy correlation (EEC) function for e+e� events was introduced in Ref. [54]

for its particularly nice factorization and resummation properties. It is defined as

EEC
a

=
1

E2

tot
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i 6=j

E
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E
j

| sin ✓
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|a(1� | cos ✓
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|)1�a ⇥[(~q
i

· ~n
T

)(~q
j

· ~n
T

)] , (2.10)

where the sum runs over all particles in the event and ~n
T

is the direction of the thrust

axis. This variable is IRC safe for all a < 2. The ⇥-function is only non-zero if the pair

of particles is in the same hemisphere. This removes the large correlation of the two initial

hard partons which would otherwise dominate the sum, and means that EEC
a

behaves much

like the jet angularities [9, 51] with the same angular exponent a. The EEC was introduced

because it is insensitive to recoil e↵ects and has smooth behavior for all allowed values of

a. In particular, EEC
a

has a smooth transition through a = 1, whereas angularities exhibit

non-smooth behavior and also are increasingly sensitive to recoil e↵ects as the angular power

a increases. If one considers only one hemisphere of a dijet event, then EEC
a

is approximately

the same as C
(�)

1

in our notation with � = 2 � a. Both observables are sensitive to 1-prong

(sub)structure, and we will discuss the issue of recoil further in Sec. 2.2.

A related two-particle angular correlation function was introduced in Refs. [21, 55, 64]

for discrimination of jets initiated by QCD from jets from boosted heavy particle decays. The

5This double ratio scales as ��� under transverse Lorentz boosts.
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If a jet has fewer than N constituents then ECF(N,�) = 0. Note that the computational

cost for ECF(N,�) with k particles scales like kN/N !.

From the ECF(N,�), we would like to define a dimensionless observable that can be

used to determine if a system has N subjets. The key observation is that the (N + 1)-

point correlators go to zero if there are only N particles. More generally, if a system has N

subjets, then ECF(N + 1,�) should be significantly smaller than ECF(N,�). One potentially

interesting ratio is
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which behaves much like N -subjettiness ⌧
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in that for a system of N partons plus soft

radiation, the observable is linear in the energy of the soft radiation.4 Of course, this is but

one choice for an interesting combination of the energy correlation functions, and one can

imagine using the whole set of energy correlation functions in a multivariate analysis.

3We will continue to use the notation ECF, though we will mainly use the transverse momentum version

in this paper.
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axis. This variable is IRC safe for all a < 2. The ⇥-function is only non-zero if the pair

of particles is in the same hemisphere. This removes the large correlation of the two initial

hard partons which would otherwise dominate the sum, and means that EEC
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behaves much

like the jet angularities [9, 51] with the same angular exponent a. The EEC was introduced
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has a smooth transition through a = 1, whereas angularities exhibit

non-smooth behavior and also are increasingly sensitive to recoil e↵ects as the angular power
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in our notation with � = 2 � a. Both observables are sensitive to 1-prong
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Jet Energy Correlators : LL Quark Gluon Discrimination

Dominated by the splitting angle and energy of the softer particle  

Resummed distribution
that follows is then

1

�

d�LL

dC
(�)

1

=
2↵

s

⇡

C

�

L

C
(�)

1

e
�↵s
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C
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2

. (3.5)

Because the quark color factor is smaller than the gluon color factor, the Sudakov suppression

is less for quarks. Thus, the C
(�)

1

distribution for quark jets is peaked at smaller values than

for gluon jets.

To figure out the quark/gluon discrimination power from this C(�)

1

resummed distribution,

we will make a sliding cut on C
(�)

1

and count the number of events that lie to the left of the cut.

Adjusting this cut then defines a ROC curve relating the signal (quark) jet e�ciency to the

background (gluon) jet rejection. To LL accuracy, the (normalized) cumulative distributions

for quarks and gluons are:

⌃
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CF
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, ⌃
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(C(�)
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. (3.6)

Note that at LL order, there is a simple relationship between these cumulative distributions:

⌃
g

(C(�)

1

) =
⇣

⌃
q

(C(�)

1

)
⌘

CA/CF

. (3.7)

Thus, if a sliding cut on C
(�)

1

retains a fraction x of the quarks, it will retain a fraction xCA/CF

of the gluons. The quark/gluon discrimination curve is then

disc(x) = xCA/CF = x9/4, (3.8)

which (perhaps surprisingly) is independent of �. This LL discrimination result holds for a

wide class of IRC safe observables sensitive to the overall jet color factor, including the jet

mass. Only beyond LL order does the discrimination curve depend on �.

3.2 Next-to-Leading Logarithmic Analysis

We continue our analysis to next-to-leading logarithmic (NLL) order, which we define as in-

cluding all terms that scale as ↵n

s

Ln+1 and ↵n

s

Ln in ln⌃. In addition, we will also include the

non-logarithmically enhanced term arising at O(↵
s

). At NLL order, there are several new

e↵ects that must be included, which together turn out to improve the quark/gluon discrim-

ination power of C(�)

1

compared to the LL estimate. The dominant e↵ects are subleading

terms in the splitting functions and phase space restrictions due to multiple emissions. In

addition, one must account for the running of ↵
s

, fixed-order corrections, and non-global log-

arithms [79] arising from the phase space cut of the jet algorithm. We will consider how these

a↵ect the discrimination power of C(�)

1

, ultimately showing that small values of � improve

quark/gluon discrimination. We will work in an approximation of small jet radius, R
0

⌧ 1,

which will allow us to consider only the e↵ects of radiation from the jet, while neglecting

modifications associated with the full antenna structure of initial and final-state partons.

The resummation to NLL for generic (global) observables was carried out in Ref. [54].

The central result of that analysis was an expression for the NLL cumulative distribution
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In any discussion of quark–gluon discrimination, one should start with a reminder that

defining what is meant by a quark or a gluon jet is a subtle task, since the one existing

infrared-safe way of defining quark and gluon jets [76] works only at parton level. Existing

work on practical aspects of quark–gluon discrimination in Refs. [39, 73, 75, 77, 78] has

not entered into these issues. Instead the discussion has relied on Monte Carlo simulations,

defining a quark (gluon) jet to be whatever results from the showering of a quark (gluon)

parton. We will adopt a variant of this methodology in our Monte Carlo studies. Our analytic

approach will instead define a quark or gluon jet in terms of the sum of the flavors of the

partons contained inside it. It is based on resummation and therefore contains similar physics

to the Monte Carlo parton shower.

3.1 Leading Logarithmic Analysis

We begin our analysis by considering the leading logarithmic (LL) structure of the cross

section for the observable C
1

. With L equal to the logarithm of C
1

, we define LL order as

including all terms in the cross section that scale like ↵n

s

L2n, for n � 1. At LL order, quark

versus gluon jet discrimination can be understood as a consequence of quarks and gluons

having di↵erent color charges. To LL order, the strong coupling constant ↵
s

can be taken

fixed and only the most singular term in the splitting function need be retained. With only

one soft-collinear gluon emission, the normalized di↵erential cross section for any infrared and

collinear safe observable e has the same form for both quark and gluon jets:
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where C is the color factor, R
0

is the jet radius,13 z is the energy fraction of the emitted

gluon, ✓ is its splitting angle, and ê is a function of z and ✓. Recall that C
F

= 4/3 for quarks

and C
A

= 3 for gluons.

At this order, the observable C
(�)

1

is

Ĉ
(�)
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= z(1� z)✓� , (3.2)

which takes a maximum value of 1

4

R�
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. So integrating Eq. (3.1) yields, for small C(�)
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, the
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We identify the logarithm L as

L ⌘ ln
R�

0

C
(�)

1

, (3.4)

which we use in the following expressions for compactness. This distribution can be resummed

to LL order by exponentiating the cumulative C
(�)

1

distribution. The resummed distribution

13We use this somewhat non-standard notation because R will later be used with a di↵erent meaning.
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is less for quarks. Thus, the C
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Cumulative distribution between quarks and gluons 
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Because the quark color factor is smaller than the gluon color factor, the Sudakov suppression

is less for quarks. Thus, the C
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resummed distribution,
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background (gluon) jet rejection. To LL accuracy, the (normalized) cumulative distributions

for quarks and gluons are:

⌃
q

(C(�)

1

) = e
�↵s

⇡
CF
� L

2

, ⌃
g

(C(�)

1

) = e
�↵s

⇡
CA
� L

2

. (3.6)

Note that at LL order, there is a simple relationship between these cumulative distributions:

⌃
g

(C(�)

1

) =
⇣

⌃
q

(C(�)

1

)
⌘

CA/CF

. (3.7)

Thus, if a sliding cut on C
(�)

1

retains a fraction x of the quarks, it will retain a fraction xCA/CF

of the gluons. The quark/gluon discrimination curve is then

disc(x) = xCA/CF = x9/4, (3.8)

which (perhaps surprisingly) is independent of �. This LL discrimination result holds for a

wide class of IRC safe observables sensitive to the overall jet color factor, including the jet

mass. Only beyond LL order does the discrimination curve depend on �.

3.2 Next-to-Leading Logarithmic Analysis

We continue our analysis to next-to-leading logarithmic (NLL) order, which we define as in-

cluding all terms that scale as ↵n

s

Ln+1 and ↵n

s

Ln in ln⌃. In addition, we will also include the

non-logarithmically enhanced term arising at O(↵
s

). At NLL order, there are several new

e↵ects that must be included, which together turn out to improve the quark/gluon discrim-

ination power of C(�)

1

compared to the LL estimate. The dominant e↵ects are subleading

terms in the splitting functions and phase space restrictions due to multiple emissions. In

addition, one must account for the running of ↵
s

, fixed-order corrections, and non-global log-

arithms [79] arising from the phase space cut of the jet algorithm. We will consider how these

a↵ect the discrimination power of C(�)

1

, ultimately showing that small values of � improve

quark/gluon discrimination. We will work in an approximation of small jet radius, R
0

⌧ 1,

which will allow us to consider only the e↵ects of radiation from the jet, while neglecting

modifications associated with the full antenna structure of initial and final-state partons.

The resummation to NLL for generic (global) observables was carried out in Ref. [54].

The central result of that analysis was an expression for the NLL cumulative distribution
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Discriminant

Quark jets peaked at smaller values of        than gluons,
because the radiate less.

Independent of the angular exponent

In any discussion of quark–gluon discrimination, one should start with a reminder that

defining what is meant by a quark or a gluon jet is a subtle task, since the one existing

infrared-safe way of defining quark and gluon jets [76] works only at parton level. Existing

work on practical aspects of quark–gluon discrimination in Refs. [39, 73, 75, 77, 78] has

not entered into these issues. Instead the discussion has relied on Monte Carlo simulations,

defining a quark (gluon) jet to be whatever results from the showering of a quark (gluon)

parton. We will adopt a variant of this methodology in our Monte Carlo studies. Our analytic

approach will instead define a quark or gluon jet in terms of the sum of the flavors of the

partons contained inside it. It is based on resummation and therefore contains similar physics

to the Monte Carlo parton shower.

3.1 Leading Logarithmic Analysis

We begin our analysis by considering the leading logarithmic (LL) structure of the cross

section for the observable C
1

. With L equal to the logarithm of C
1

, we define LL order as

including all terms in the cross section that scale like ↵n

s

L2n, for n � 1. At LL order, quark

versus gluon jet discrimination can be understood as a consequence of quarks and gluons

having di↵erent color charges. To LL order, the strong coupling constant ↵
s

can be taken

fixed and only the most singular term in the splitting function need be retained. With only

one soft-collinear gluon emission, the normalized di↵erential cross section for any infrared and

collinear safe observable e has the same form for both quark and gluon jets:

1

�

d�

de
= 2

↵
s

⇡
C

Z

R0

0

d✓

✓

Z

1

0

dz

z
�(e� ê) , (3.1)

where C is the color factor, R
0

is the jet radius,13 z is the energy fraction of the emitted

gluon, ✓ is its splitting angle, and ê is a function of z and ✓. Recall that C
F

= 4/3 for quarks

and C
A

= 3 for gluons.

At this order, the observable C
(�)

1

is

Ĉ
(�)

1

= z(1� z)✓� , (3.2)

which takes a maximum value of 1

4

R�

0

. So integrating Eq. (3.1) yields, for small C(�)

1

, the

cross section
1

�

d�

dC
(�)

1

=
2↵

s

⇡

C

�

1

C
(�)

1

ln
R�

0

C
(�)

1

. (3.3)

We identify the logarithm L as

L ⌘ ln
R�

0

C
(�)

1

, (3.4)

which we use in the following expressions for compactness. This distribution can be resummed

to LL order by exponentiating the cumulative C
(�)

1

distribution. The resummed distribution

13We use this somewhat non-standard notation because R will later be used with a di↵erent meaning.
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Jet Energy Correlators : Identifying Light Resonances

•Given a signal we would like to classify the 
resonance. 

•Apart from direct spin measurements, 
radiation patterns provide valuable clue. 

•Color octets, sextets and singlets can be 
distinguished by how it radiates. 

•Jet energy correlations can be an efficient 
handle in this case. 



Jet Energy Corelators  - pT Information

40K events, signal only 
Boosted “fat jets” with R=1.5 

(which pass mass-drop criteria) 
β=2, Pythia tune 4c

PRELIMINARY

C(�)
1 =

P
ij EiEj✓

�
ij

(
P

i Ei)2
/

✓
mR

pT

◆�



Jet Energy Correlators : Distinguishing resonances

Discriminating with higher point moments 

also depends strongly on what type of radiation contributes to the jet 
• Color octets have more wide angle radiation compared to color singlets. 
• Larger jet radius improves discrimination power.  
• Larger value of the angular exponent -> More weight to wide angle emissions. 

40K events,  
signal only 

Boosted “fat jets”  
with R=1.5 

(which pass the 
mass drop criteria) 

β=2 
Pythia, tune 4c

PRELIMINARY

C(�)
3 =

ECF(4,�)ECF(2,�)

ECF(3,�)2

C(�)
3



Jet Energy Correlators : Significance

Assumption :  0.4 fb after all cuts and background free

2σ

5σ

PRELIMINARY

2D binned log 
likelihood in  

two-point and  
four-point 
correlation



Conclusions

•Jet Energy Correlators can be used to 
characterize jet substructure 

•Correlators are sensitive to spin and color 
structure of light resonances 

•… and can therefore be used to characterize 
light boosted resonances. 


