Leptophobic Spin-2 Resonances at the LHC

Dennis Foren Michigan State University

with R. S. Chivukula, E. H. Simmons

PHENO 2017 May 8th

Resonant Production at LHC: First Impressions

- $\sigma_{jj,R} = \text{peak dijet cross section}$
- m_R = invariant mass of resonance (several TeV)
- Γ_R = total decay width of the resonance (if wider than mass resolution of detector)

Model-Building Assumptions

- Model resonance as **new s-channel particle** *R*
- Leptophobic: else we'd detect via leptonic channels
- Focus on decays to light jets, where...

 $\mathbf{j} \equiv \text{light quarks } (\mathbf{u}, \mathbf{d}, \mathbf{s}, \mathbf{c}) \text{ and gluons } (\mathbf{g})$

• Assume narrow width:

 $\Gamma_R/m_R \lesssim 0.15$

What Spin-2 Resonance Models are Consistent?

- Focus on Spin-2 particle and Tree-Level calculations
- Not Excluded: focus on parameter space not yet excluded to 95% CL (12.9 fb⁻¹ of CMS LHC-13 data)
- Within Reach: only consider parameter space that the LHC is 5σ sensitive to at $\sqrt{s} = 14$ TeV with...

$$\mathcal{L}_{int} = 0.3 \text{ ab}^{-1}$$
 1 ab $^{-1}$ 3 ab $^{-1}$

• PDF set: CTEQ6L1 parton distribution functions

Leptophobic Graviton Model

Particle	Mass	Spin	$SU(3)_C \times U(1)_Q$
$X_2^{\mu u}$	m_{x_2}	2	neutral singlet

$$\mathcal{L}_{int} = -\frac{3.83}{m_{X_2}} \left[\kappa \frac{k}{\overline{M}_{Pl}} \right] \left\{ r T^g_{\mu\nu} + T^q_{\mu\nu} \right\} X^{\mu\nu}_2$$

Assume flavor universal, generation diagonal couplings.

 $q\overline{q}X_2$ and ggX_2 terms are mass dimension 5...

[coupling] =
$$E^{-1} \implies$$
 Unitarity Concerns

Partial Wave Unitarity and Tree-Level Constraint

Only one nonzero eigenvalue of A_2 : called a_2 , depends on \hat{s}

Unitarity demands

*

$$|\Re[a_2]| \leq \frac{1}{2}$$

such that for consistency for $\sqrt{\hat{s}}$ up to $\Lambda_{max}^{\rm EFT}...$

$$\kappa \frac{k}{\overline{M}_{Pl}} \leq \frac{1}{\Lambda_{max}^{\mathsf{EFT}}} \frac{m_{X_2}}{3.83} \sqrt{\frac{40\pi}{(9+8r^2)}}$$

6/13

*

Leptophobic Graviton, Gluon = Quark Coupling

Leptophobic Graviton, $r \neq 1$

Describing Dijet Resonances and D_{col} Analysis

Resolve Width only if $\Gamma_R >$ detector mass resolution M_{res} (that is, *above* the dashed line in previous plot)

Models with D_{col} predicted outside of the uncertainty of a measured dijet resonance are unlikely to describe that dijet resonance.

Leptophobic Z'

Particle	Mass	Spin	$SU(3)_C \times U(1)_Q$
Z'_{μ}	$m_{Z'}$	1	neutral singlet

$$\mathcal{L}_{int} = ig\sum_{i} \overline{q}_{i} \gamma^{\mu} (g_{L}P_{L} + g_{R}P_{R}) q_{i} Z_{\mu}^{\prime}$$

Assume flavor universal & diagonal couplings: $Z' \rightarrow q\overline{q}$

Previous D_{col} analyses demonstrate leptophobic Z' is distinguishable from...

Colorons Excited Quarks Diquarks

$log(D_{col})$, X_2 compared to Leptophobic Z'

Conclusion & Summary

- The Leptophobic Graviton is distinguishable from...
 - Colorons
 Excited Quarks
 Diquarks

- Below \approx 4 TeV, X_2 unlikely to describe a resolvable dijet resonances discovered at the LHC.
- Distinguishing X₂ from leptophobic Z' necessitates spin analysis.

Thank you for attending! Questions?