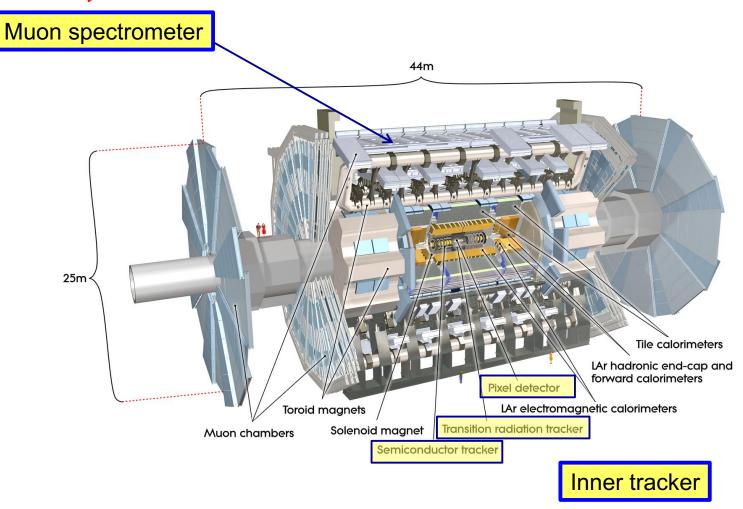
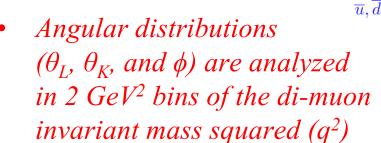

Recent results in b-physics with the ATLAS detector


b hadron production at the LHC

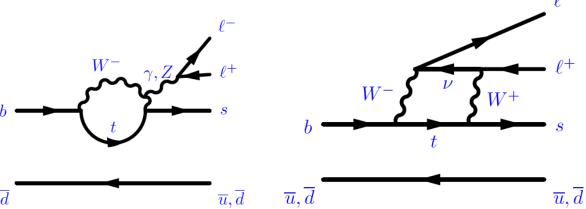
- b hadrons (and anti-hadrons) are dominantly produced through strong interaction in pp collisions at the LHC
 - Example: gluon-gluon fusion
 - Large inclusive $b\overline{b}$ cross-section (~ 0.1 mb)
 - All b hadron types including Λ_b and B_s are produced
- Unfortunately, it's hard to efficiently trigger on b hadron decays at the LHC
 - b decay products have relatively low p_T
 - Rare hadronic final states swamped by light hadron backgrounds
- Exceptions
 - Dedicated displaced vertex triggers (for example, LHCb)
 - Specific final states, e.g. including di-muons

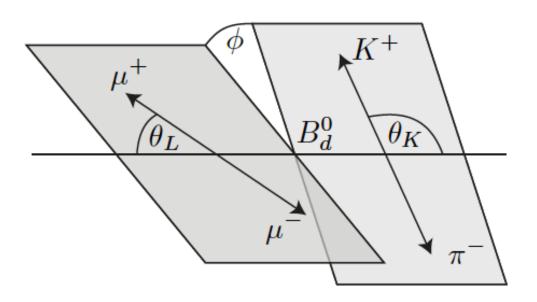
ATLAS detector and data sample

- Results based on $20 \, fb^{-1}$ of $8 \, TeV \, CM \, pp$ collisions taken in 2012
- Di-muon triggers with varying thresholds depending on instantaneous luminosity



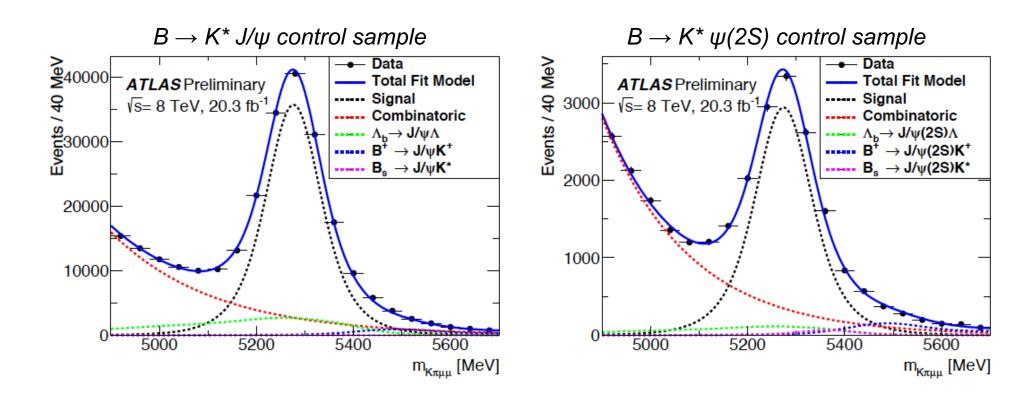
2 new ATLAS b physics analyses


Angular analysis of $B_d \rightarrow K^* \mu \mu$ (ATLAS-CONF-2017-023)

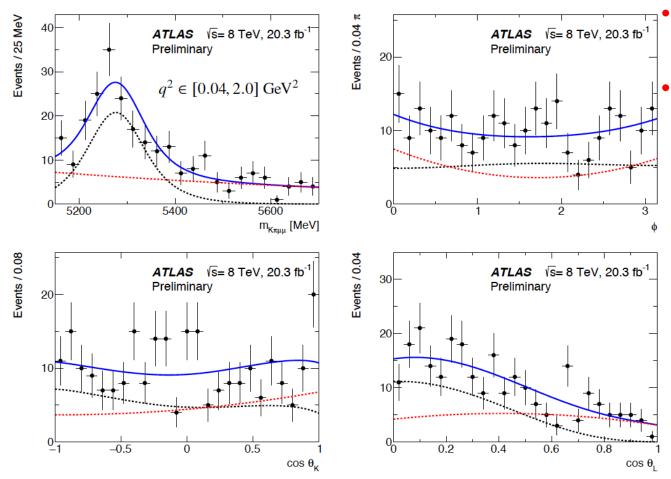

CP asymmetries in b decays using top quark pairs (JHEP 02 (2017) 071)

- Rare flavor-changing neutral current decay
 - Loop/box diagram is sensitive to new physics
 - $BR(B_d \to K^* \mu \mu) = (1.02 \pm 0.09) \times 10^{-6}$

• LHCb have reported a 3.4 σ deviation from the Standard Model [JHEP 02 (2016) 104]


• The decay angular distribution is given by

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_L \right. \\
\left. -F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi \right. \\
\left. +S_4 \sin 2\theta_K \sin 2\theta_L \cos\phi + S_5 \sin 2\theta_K \sin\theta_L \cos\phi \right. \\
\left. +S_6 \sin^2\theta_K \cos\theta_L + S_7 \sin 2\theta_K \sin\theta_L \sin\phi \right. \\
\left. +S_8 \sin 2\theta_K \sin 2\theta_L \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right]. \tag{1}$$


- ATLAS use trigonometric identities to determine F_L , S_3 and S_i (i = 4,5,7,8) in 4 separate fits for each q^2 bin
- S_i parameters are translated into the theoretically cleaner $P^{(i)}_i$ parameters

$$P_1 = \frac{2S_3}{1 - F_L} \qquad P'_{4,5,6,8} = \frac{S_{4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$$

- Low-background, high-statistics K^*J/ψ and $K^*\psi(2S)$ control samples
 - q^2 from 8-11 and from 12-15 GeV²
 - used to extract nuisance parameters (m_B, σ_0) of the signal probability density function (p.d.f.) from data

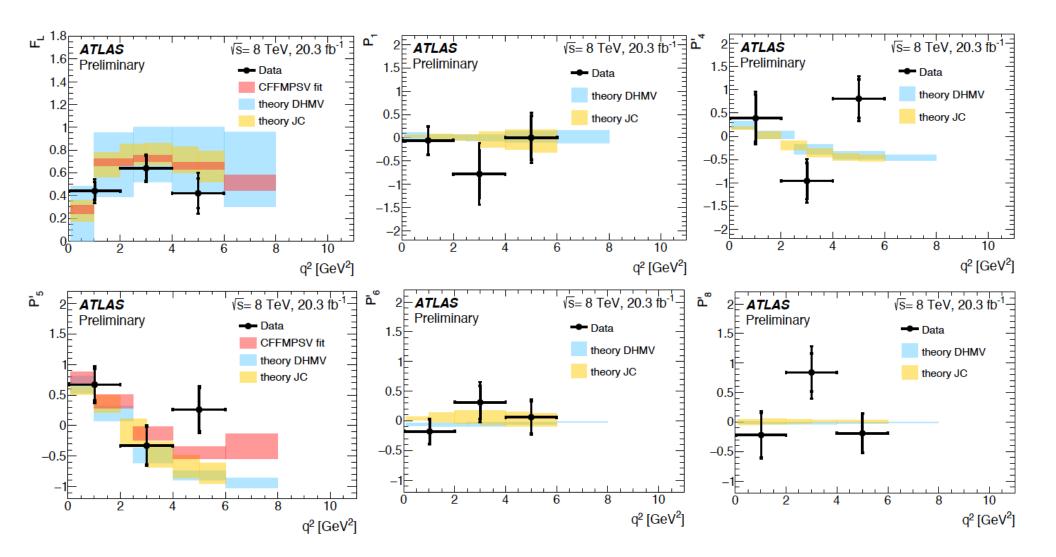
- Simultaneous fit to $\cos \theta_L$, $\cos \theta_K$ and φ distributions to isolate signal and extract parameters of interest
 - Mass p.d.f. parameters fixed to control region values

Total p.d.f (blue), signal (black) and background (red) contributions

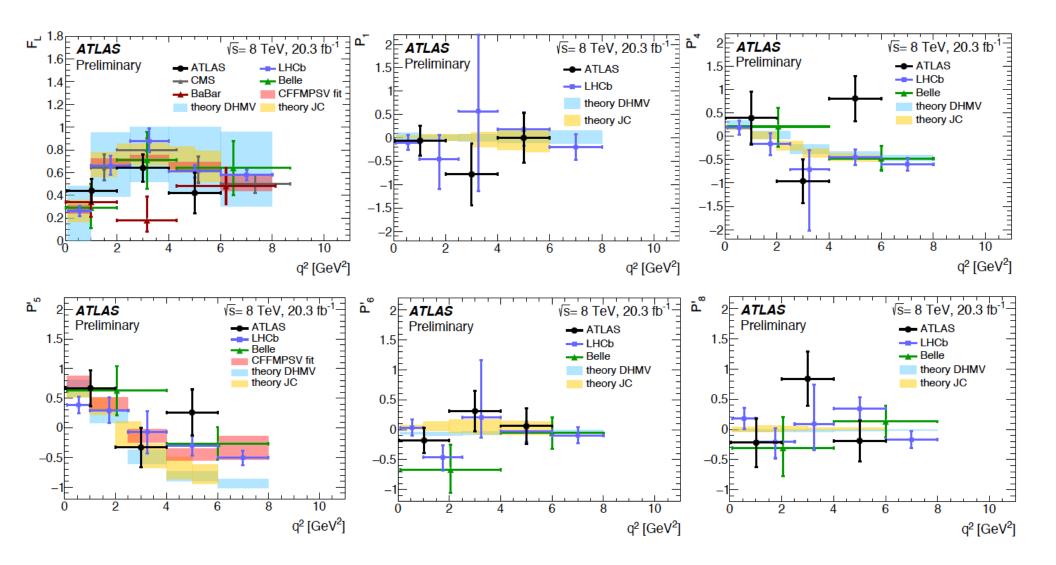
 $20.3 \, fb^{-1}$ of 8 TeV pp collision data

Analyze data in three q^2 bins from 0.04 to 6.0 GeV²

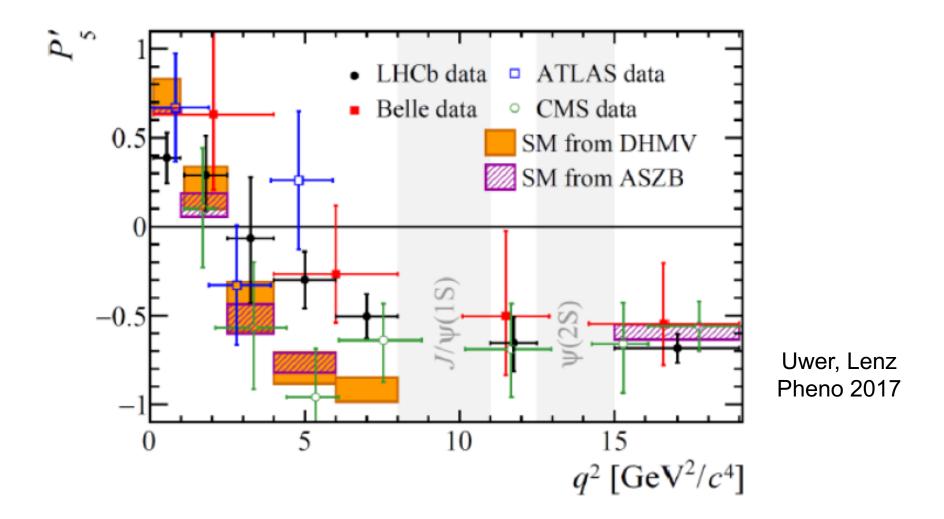
- Data shown here for $0.04 < q^2 < 2 \text{ GeV}^2$ overlaid with projections of signal and background p.d.f.s from the S_5 fit
- 128 ± 22 signal events in this q^2 bin
- Similar results are obtained for the other q² bins and fits


- Results are statistically limited
 - Fit values of F_L , S_3 , and P_1 from the 4 fits are consistent with each other; reported is the result with the smallest systematic uncertainty

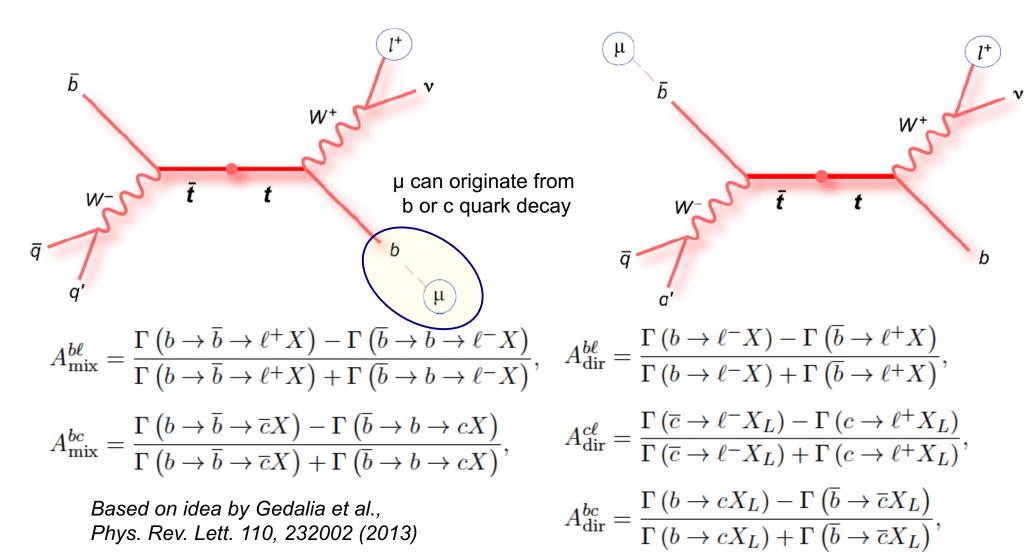
q^2 [GeV ²]	F_L	S_3	S_4	S_5	S ₇	<i>S</i> ₈
[0.04, 2.0]	$0.44 \pm 0.08 \pm 0.07$	$-0.02 \pm 0.09 \pm 0.02$	$0.19 \pm 0.25 \pm 0.10$	$0.33 \pm 0.13 \pm 0.06$	$-0.09 \pm 0.10 \pm 0.02$	$-0.11 \pm 0.19 \pm 0.07$
[2.0, 4.0]	$0.64 \pm 0.11 \pm 0.05$	$-0.15 \pm 0.10 \pm 0.07$	$-0.47 \pm 0.19 \pm 0.10$	$-0.16 \pm 0.15 \pm 0.05$	$0.15 \pm 0.14 \pm 0.09$	$0.41 \pm 0.16 \pm 0.15$
[4.0, 6.0]	$0.42 \pm 0.13 \pm 0.12$	$0.00 \pm 0.12 \pm 0.07$	$0.40 \pm 0.21 \pm 0.09$	$0.13 \pm 0.18 \pm 0.07$	$0.03 \pm 0.13 \pm 0.07$	$-0.09 \pm 0.16 \pm 0.04$
[0.04, 4.0]	$0.52 \pm 0.07 \pm 0.06$	$-0.05 \pm 0.06 \pm 0.04$	$-0.19 \pm 0.16 \pm 0.09$	$0.16 \pm 0.10 \pm 0.04$	$0.01 \pm 0.08 \pm 0.05$	$0.15 \pm 0.13 \pm 0.10$
[1.1, 6.0]	$0.56 \pm 0.07 \pm 0.06$	$-0.04 \pm 0.07 \pm 0.03$	$0.03 \pm 0.14 \pm 0.07$	$0.00 \pm 0.10 \pm 0.03$	$0.02 \pm 0.08 \pm 0.06$	$0.09 \pm 0.11 \pm 0.08$
[0.04, 6.0]	$0.50 \pm 0.06 \pm 0.04$	$-0.04 \pm 0.06 \pm 0.03$	$0.03 \pm 0.13 \pm 0.07$	$0.14 \pm 0.09 \pm 0.03$	$0.02 \pm 0.07 \pm 0.05$	$0.05 \pm 0.10 \pm 0.07$


q^2 [GeV ²]	P_1	P_4'	P_5'	P_6'	P_8'
[0.04, 2.0]	$-0.06 \pm 0.30 \pm 0.10$	$0.39 \pm 0.51 \pm 0.25$	$0.67 \pm 0.26 \pm 0.16$	$-0.18 \pm 0.21 \pm 0.04$	$-0.22 \pm 0.38 \pm 0.14$
[2.0, 4.0]	$-0.78 \pm 0.51 \pm 0.42$	$-0.96 \pm 0.39 \pm 0.26$	$-0.33 \pm 0.31 \pm 0.13$	$0.31 \pm 0.28 \pm 0.19$	$0.84 \pm 0.32 \pm 0.31$
[4.0, 6.0]	$0.00 \pm 0.47 \pm 0.26$	$0.81 \pm 0.42 \pm 0.24$	$0.26 \pm 0.35 \pm 0.17$	$0.06 \pm 0.27 \pm 0.13$	$-0.19 \pm 0.33 \pm 0.07$
[0.04, 4.0]	$-0.22 \pm 0.26 \pm 0.16$	$-0.38 \pm 0.31 \pm 0.22$	$0.32 \pm 0.21 \pm 0.10$	$0.01 \pm 0.17 \pm 0.10$	$0.30 \pm 0.26 \pm 0.19$
[1.1, 6.0]	$-0.17 \pm 0.31 \pm 0.14$	$0.07 \pm 0.28 \pm 0.18$	$0.01 \pm 0.21 \pm 0.07$	$0.03 \pm 0.17 \pm 0.11$	$0.18 \pm 0.22 \pm 0.16$
[0.04, 6.0]	$-0.15 \pm 0.23 \pm 0.10$	$0.07 \pm 0.26 \pm 0.18$	$0.27 \pm 0.19 \pm 0.07$	$0.03 \pm 0.15 \pm 0.10$	$0.11 \pm 0.21 \pm 0.14$

- Dominant systematics come from uncertainties in the background
 - partially reconstructed decays with open charm and incorrect $K\pi$ combinations (fake K^*)
 - $K\pi$ S-wave contributions results only in small systematic uncertainty


ATLAS results are compatible with theoretical calculations and fits

• ATLAS results are compatible with measurements from other experiments



• ATLAS results are compatible with measurements from other experiments

Recent CMS results for P₁ and P'₅ also agree with SM predictions (CMS PAS BPH-15-008)

• Measure same sign (SS) and opposite sign (OS) lepton pairs in top quark pair events to determine mixing and direct CP asymmetries from observed N^{++} , N^{--} , N^{+-} and N^{-+} rates $(N^{q(l(W))q'(l(b))})$

- Standard top reconstruction for semi-leptonic tt events
- Require 2 leptons in an event
 - Hard lepton from W tags the b flavor at production through $t \rightarrow bW^+ \rightarrow b l^+ v$
 - Soft muon tagger (SMT¹) constrains the b decay chain

Same sign leptons
$$t \to \ell^+ \nu \ (b \to \bar{b}) \to \ell^+ \ell^+ X \,, \qquad t \to \ell^+ \nu \ (b \to c) \to \ell^+ \ell^+ X \,, \qquad t \to \ell^+ \nu \ (b \to \bar{b}) \to \ell^+ \ell^- X \,, \\ t \to \ell^+ \nu \ (b \to \bar{b}) \to c \ \bar{c}) \to \ell^+ \ell^+ X \,, \qquad t \to \ell^+ \nu \ (b \to \bar{b}) \to c \ \bar{c}) \to \ell^+ \ell^- X \,,$$

$$P\left(\overline{b} \to \ell^{-}\right) = \frac{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)}{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)} = \frac{N^{--}}{N^{--} + N^{-+}} = \frac{N^{--}}{N^{-}},$$

$$P\left(\overline{b} \to \ell^{-}\right) = \frac{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)}{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)} = \frac{N^{--}}{N^{--} + N^{-+}} = \frac{N^{--}}{N^{-}},$$

$$P\left(\overline{b} \to \ell^{-}\right) = \frac{N\left(b \to \ell^{-}\right) + N\left(b \to \ell^{+}\right)}{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)} = \frac{N^{+-}}{N^{+-} + N^{++}} = \frac{N^{+-}}{N^{+}},$$

$$P\left(\overline{b} \to \ell^{+}\right) = \frac{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)}{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)} = \frac{N^{-+}}{N^{--} + N^{-+}} = \frac{N^{-+}}{N^{-}},$$

$$A^{\text{os}} = r_{b}A^{\text{bl}}_{\text{mix}} + r_{c}\left(A^{\text{bc}}_{\text{dir}} - A^{\text{cl}}_{\text{dir}}\right) + r_{c\bar{c}}A^{\text{cl}}_{\text{dir}}$$

$$A^{\text{os}} = r_{b}A^{\text{bl}}_{\text{dir}} + r_{c}\left(A^{\text{bc}}_{\text{mix}} + A^{\text{cl}}_{\text{dir}}\right) + r_{c\bar{c}}A^{\text{cl}}_{\text{dir}}$$

$$A^{\text{os}} = r_{b}A^{\text{bl}}_{\text{dir}} + r_{c}\left(A^{\text{bc}}_{\text{mix}} + A^{\text{cl}}_{\text{dir}}\right) + r_{c\bar{c}}A^{\text{cl}}_{\text{dir}}$$

$$- Fully reconstruct \ \overline{tt} \ candidate \ with \ KLFitter^{2}$$

$$P(b \to \ell^{+}) = \frac{N(b \to \ell^{+})}{N(b \to \ell^{-}) + N(b \to \ell^{+})} = \frac{N^{++}}{N^{+-} + N^{++}} = \frac{N^{++}}{N^{+}},$$

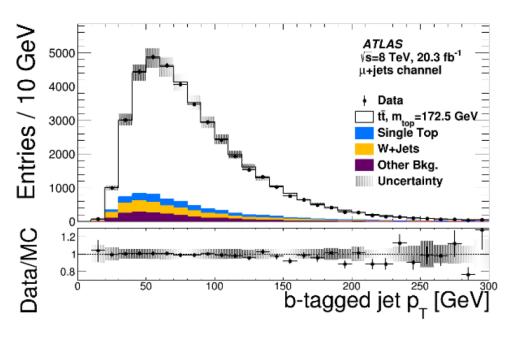
$$P(\overline{b} \to \ell^{-}) = \frac{N(\overline{b} \to \ell^{-})}{\overline{P(b \to \ell^{-}) + N(b \to \ell^{+})}} = \frac{N^{--}}{N^{--}} = \frac{N^{--}}{N^{--}},$$

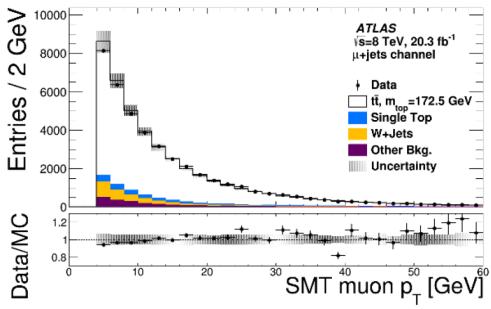
$$A^{\text{os}} = \frac{P(b \to \ell^{+}) - P(\overline{b} \to \ell^{-})}{P(b \to \ell^{-}) - P(\overline{b} \to \ell^{+})},$$

$$A^{\text{os}} = \frac{P(b \to \ell^{-}) - P(\overline{b} \to \ell^{+})}{P(b \to \ell^{-}) + P(\overline{b} \to \ell^{+})},$$

Relate charge asymmetries to

$$A^{\text{ss}} = r_b A_{\text{mix}}^{b\ell} + r_c \left(A_{\text{dir}}^{bc} - A_{\text{dir}}^{c\ell} \right) + r_{c\overline{c}} \left(A_{\text{mix}}^{bc} - A_{\text{dir}}^{c\ell} \right)$$
$$A^{\text{os}} = \widetilde{r}_b A_{\text{dir}}^{b\ell} + \widetilde{r}_c \left(A_{\text{mix}}^{bc} + A_{\text{dir}}^{c\ell} \right) + \widetilde{r}_{c\overline{c}} A_{\text{dir}}^{c\ell}$$


¹ Soft Muon Tagger, ATLAS Collaboration, JINST 11(2016) P04008


² Kinematic Likelihood fitter, Erdmann et al., NIM A 748 (2014) 18

r's are decay rate fractions in the fiducial volume

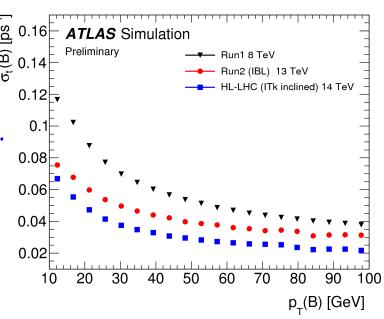
- Good agreement between expected and measured event yields
- ~ 80 % signal purity in selected sample of tt candidates

	e+jets		μ +jets	
WW, WZ, WW	50	± 7	45	± 5
Z+jets	800	± 80	450	± 60
Multijet	1 800	$\pm~1~400$	1 500	± 330
Single top	1 800	$\pm~150$	2 000	$\pm~150$
W+jets	2 500	$\pm~160$	2 800	$\pm~150$
$t\bar{t}$	30 000	$\pm~1~900$	34 000	$\pm~2~000$
Expected	37 000	$\pm~2~600$	41 000	$\pm~2~300$
Data	36 796		40 807	

- Measured charge and CP asymmetries are
 - Determined with %-level uncertainties
 - Consistent with zero and SM predictions

	Data (10^{-2})	$MC (10^{-2})$	Existing limits (2σ) ((10^{-2}) SM prediction	n (10 ⁻²)
A^{ss}	-0.7 ± 0.8	0.05 ± 0.23	-	$< 10^{-2}$	[19]
A^{os}	0.4 ± 0.5	$-0.03\ \pm0.13$	-	$< 10^{-2}$	[19]
A_{mix}^b	-2.5 ± 2.8	0.2 ± 0.7	< 0.1	$[95] < 10^{-3}$	[95, 96]
$A_{ m dir}^{b\ell}$	0.5 ± 0.5	$-0.03\ \pm0.14$	< 1.2	$[94] < 10^{-5}$	[19, 94]
$A_{ m dir}^{c\ell}$	1.0 ± 1.0	$-0.06\ \pm0.25$	< 6.0	$[94] < 10^{-9}$	[19, 94]
$A_{ m dir}^{bc}$		0.07 ± 0.29	-	$< 10^{-7}$	[97]

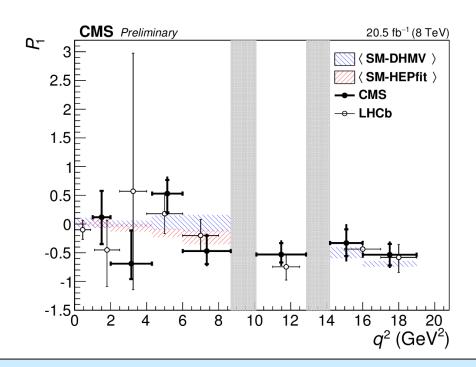
```
[19] Gedalia et al. Phys. Rev. Lett. 110 (2013) 232002
```

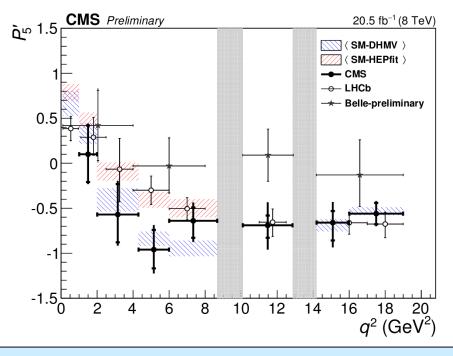

[94] Decotes-Genon et al., Phys. Rev D87 (2015)

[95] HFAG, arXiv:1412.7515

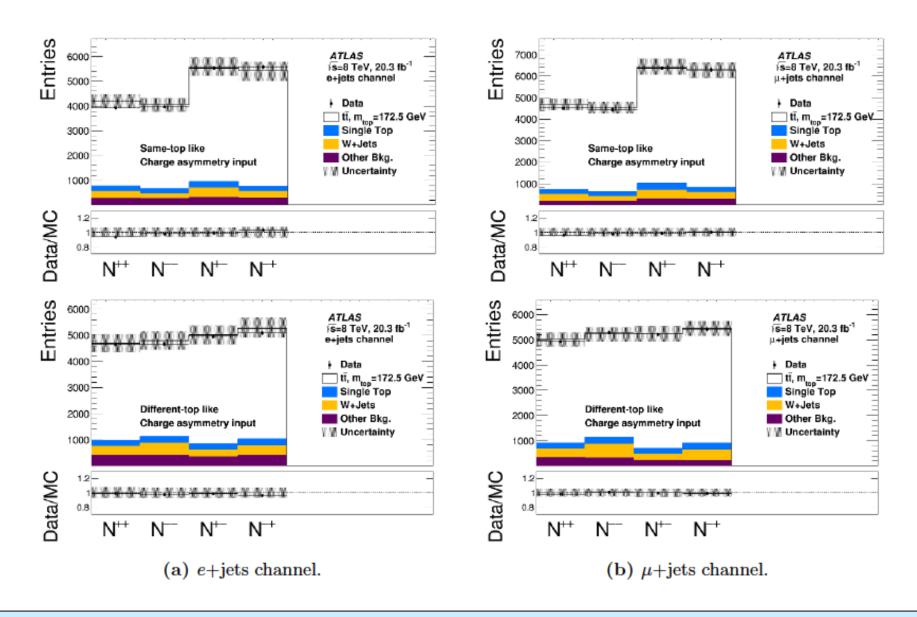
[97] Bar-Shalom et al., Phys. Lett B694 (2011) 374

Conclusions


- Presented two recent ATLAS results in b physics
 - Results of angular analysis of rare decay $B_d \rightarrow K^* \mu \mu$ are consistent with the SM and show no evidence of new physics (ATLAS-CONF-2017-023)
 - Measurements of direct and mixing CP asymmetries in b decays from tt pairs are consistent with zero and the SM (JHEP 02 (2017) 071)
- Since 2015 ATLAS is taking data at 13 TeV (Run 2), expect more heavy flavor results in the near future
 - Higher b pair cross-section
 - Improved decay time and vertex resolution $\stackrel{\textcircled{\tiny 0}}{\circ}$ 0.14 from new Insertable B Layer (IBL)
 - Commissioning topological di-muon trigger $(p_T \text{ and opening angle})$
 - Expect about $100 \, fb^{-1}$ by end of 2018



Back-Up Slides


• Recent result from CMS for P_1 and P'_5 agree with SM predictions (CMS PAS BPH-15-008)

q^2 (GeV ²)	Signal yield	P_1	P_5'
1.00-2.00	80 ± 12	$+0.12^{+0.46}_{-0.47} \pm 0.06$	$+0.10^{+0.32}_{-0.31} \pm 0.12$
2.00-4.30	145 ± 16	$-0.69^{+0.58}_{-0.27} \pm 0.09$	$-0.57^{+0.34}_{-0.31} \pm 0.15$
4.30-6.00	119 ± 14	$+0.53^{+0.24}_{-0.33} \pm 0.18$	$-0.96^{+0.22}_{-0.21} \pm 0.16$
6.00-8.68	247 ± 21	$-0.47^{+0.27}_{-0.23} \pm 0.13$	$-0.64^{+0.15}_{-0.19} \pm 0.14$
10.09-12.86	354 ± 23	$-0.53^{+0.20}_{-0.14} \pm 0.14$	$-0.69^{+0.11}_{-0.14} \pm 0.23$
14.18–16.00	213 ± 17	$-0.33^{+0.24}_{-0.23} \pm 0.22$	$-0.66^{+0.13}_{-0.20} \pm 0.19$
16.00–19.00	239 ± 19	$-0.53^{+0.19}_{-0.19} \pm 0.13$	$-0.56^{+0.12}_{-0.12} \pm 0.07$

• Same-top (top) and different-top (bottom) N^{ij} rates

