Neutrino backgrounds for direct detection of sub-GeV dark matter via electron scattering

Phenomenology symposium 2017

Mukul Sholapurkar
C.N. Yang Institute of Theoretical Physics, Stony Brook

Work in progress with Rouven Essig and Tien-Tien Yu

Introduction

- WIMP phenomenology covers the GeV-TeV scale
- Sub-GeV dark matter?

Can be detected via electron scattering

^{*} Billard, Figueroa-Feliciano and Strigari

Direct detection of sub-GeV dark matter

- Electrons ionized by DMelectron scattering
- Some of the ways of detecting :
- Semiconductor targets(Ge, Si)
- >Xenon targets
- ➤ Scintillators(GaAs, Nal)

*Essig, Volansky, and T.-T. Yu

WIMP constraints

Neutrino floor

^{*} Billard, Figueroa-Feliciano and Strigari

WIMP constraints

Neutrino floor

Will neutrino background affect LDM-electron scattering?

* Billard, Figueroa-Feliciano and Strigari

Background for sub-GeV DM-electron scattering?

- Neutrino-electron scattering peaks in a much higher energy range!
- Neutrino-nucleus scattering is in the right energy range.
- Nuclear recoil energy

Electron ionization energy?

Neutrino Background Rates

*Essig, Mardon and Volansky

Energy conversion models

- The most accepted model was developed by Lindhardt in 1963.
- Lindhardt model is not consistent with low energy(~ 1 KeV nuclear recoil energy) data in Si
- Extrapolate to low energies!

*Agnese et al. (SuperCDMS)

Conversion schemes for Si

Neutrino rates in Si for various conversion schemes

Likelihood analysis

Hypothesis testing to reject the background hypothesis

The likelihood function is given by,

$$\mathcal{L}(\sigma_{\chi e}, \vec{\phi}) = \frac{e^{-(\mu_{\chi} + \sum_{j=1}^{n_{\nu}} \mu_{\nu}^{j})}}{N!} \times \prod_{i=1}^{N} \left[\mu_{\chi} f_{\chi}(n_{i}) + \sum_{j=1}^{n_{\nu}} \mu_{\nu}^{j} f_{\nu}^{j}(n_{i}) \right] \times \prod_{i=1}^{n_{\nu}} \mathcal{L}(\phi_{i}).$$

The test statistic t is given by,

$$t = -2ln(\lambda),$$

where,

$$\lambda = \frac{\mathcal{L}(\sigma_{\chi e} = 0, \hat{\vec{\phi}})}{\mathcal{L}(\hat{\sigma_{\chi e}}, \hat{\vec{\phi}})}.$$

Finding neutrino floor

For a particular dark matter mass, exposure and threshold, we perform the likelihood analysis and use the Wilk's theorem to get the lowest cross-section which gives a 2σ significance.

Minimize with respect to thresholds and exposures to get to the floor!

Results

• 2σ significance discovery limits for medium conversion scheme.

Results

• 2σ significance discovery limit for 10000 kg-year exposure and medium conversion scheme.

Comparison for various conversion schemes

Summary

- Even under conservative assumptions, neutrinos will not be a background for electron recoil searches in Si for exposures < 2 kgyears
- No hard neutrino floor for DM masses more than 1 MeV at least till 10,000 kg-year exposures even with current neutrino flux uncertainties
- Also obtained similar results for Ge which place slightly tighter limits
- Neutrino backgrounds for scintillators like GaAs, NaI, CsI are under study