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Problems	of	the	Standard	Model		

Although	the	Standard	Model	(SM)	is	the	best	theory	
so	far,	New	Physics	beyond	SM	is	strongly	suggested	
by	both	experimental	&	theoreQcal	points	of	view		

What	is	missing?		

	1.	Neutrino	masses	and	flavor	mixings		
	2.	Dark	ma4er	candidate		

New	Physics	must	supplement	the	missing	pieces		



Minimal	gauged	B-L	extension	of	the	Standard	Model	

Ø  B-L	is	the	unique	anomaly	free	global	symmetry	in	the	SM	

Ø  Gauging	the	global	B-L	symmetry	looks	natural		

Ø  Anomaly	free	requirement	à	3	right-handed	neutrinos	

For	neutrino	mass	

In	terms	of	LHC	physics,		
																										we	focus	on	the	B-L	model	@	TeV	



Minimal	Gauged	B-L	Extension	of	the	SM	

The	model	is	based	on		

ParQcle	Contents		

New	fermions:	

New	scalar:	

Mohapatra	&	Marshak;		
We4erich;	others	

2

SU(3)c SU(2)L U(1)Y U(1)B−L

qiL 3 2 +1/6 +1/3
ui
R 3 1 +2/3 +1/3

diR 3 1 −1/3 +1/3
ℓiL 1 2 −1/2 −1
N i 1 1 0 −1
eiR 1 1 −1 −1
H 1 2 −1/2 0
Φ 1 1 0 +2

TABLE I: Particle content. In addition to the SM particle
contents, the right-handed neutrino N i (i = 1, 2, 3 denotes
the generation index) and a complex scalar Φ are introduced.

SU(3)c × SU(2)L × U(1)Y × U(1)B−L and the particle
content is listed in Table 1 [33]. The SM singlet scalar (Φ)
breaks the U(1)B−L gauge symmetry down to Z2 (B−L)

by its vacuum expectation value (vev), and at the same
time generates the right-handed neutrino masses. The
Lagrangian terms relevant for the seesaw mechanism are
given by

L ⊃ −Y ij
D N iH†ℓjL −

1

2
Y i
NΦN icN i + h.c., (1)

where the first term yields the Dirac neutrino mass after
electroweak symmetry breaking, while the right-handed
neutrino Majorana mass term is generated by the second
term associated with the B − L gauge symmetry break-
ing. Without loss of generality, we use the basis which
diagonalizes the second term and makes Y i

N real and pos-
itive.
Consider the following tree level action in the Jordan

frame:

Stree
J =

∫

d4x
√
−g

[

−
(

m2
P

2
+ ξHH†H + ξΦ†Φ

)

R

+(DµH)†gµν(DνH)− λH

(

H†H −
v2

2

)2

+(DµΦ)
†gµν(DνΦ)− λ

(

Φ†Φ−
v2B−L

2

)2

−λ′(Φ†Φ)(H†H)
]

, (2)

where v and vB−L are the vevs of the Higgs fields H and
Φ respectively. To simplify the discussion, we assume
that λ′ is sufficiently small so it can be ignored, and also
ξH ≪ ξ.
The relevant one-loop renormalization group improved

effective action can be written as [41]

SJ =

∫

d4x
√
−g

[

−
(

m2
P + ξG(t)2φ2

2

)

R

+
1

2
G(t)2(∂φ)2 −

1

4
λ(t)G(t)4φ4

]

, (3)

where t = ln(φ/µ) and G(t) = exp(−
∫ t
0 dt′γ(t′)/(1 +

γ(t′))), with

γ(t) =
1

(4π)2

(

1

2

∑

i

(Y i
N (t))2 − 12 g2B−L(t)

)

(4)

being the anomalous dimension of the inflaton field.
gB−L denotes the U(1)B−L gauge coupling and µ the
renormalization scale. In the presence of the nonmini-
mal gravitational coupling, the one loop renormalization
group equations (RGEs) of λ, gB−L, ξ and Y i

N are given
by [32, 33]

(4π)2
dλ

dt
= (2 + 18 s2)λ2 − 48λ g2B−L + 96g4B−L

+2λ
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(Y i
N )2 −
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N )4, (5)
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g3B−L, (6)

(4π)2
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= (ξ + 1/6)
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, (7)

(4π)2
dY i

N
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N )3 − 6g2B−LY
i
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1

2
Y i
N

∑

j

(Y j
N )2,

(8)

where the s factor is defined as

s(φ) ≡

(

1 + ξφ2

m2

P

)

1 + (6ξ + 1) ξφ
2

m2

P

. (9)

In the Einstein frame with a canonical gravity sector,
the kinetic energy of φ can be made canonical with re-
spect to a new field σ = σ(φ) [7],

(

dσ

dφ

)2

=
G(t)2Ω(t) + 3m2

P (∂φΩ(t))
2/2

Ω(t)2
, (10)

where,

Ω(t) = 1 + ξG(t)2φ2/m2
P . (11)

The action in the Einstein frame is then given by

SE =

∫

d4x
√
−gE

[

−
1

2
m2

PRE +
1

2
(∂Eσ)

2 − VE(σ)

]

,

(12)
with

VE(φ) =
1
4λ(t)G(t)4 φ4

(

1 + ξ φ2

m2

P

)2 . (13)

In our numerical work, we employ above potential with
the RGEs given in Eqs. (5-8). However, for a qualitative
discussion it is reasonable to use the following leading-log
approximation of the above potential:

VE(φ) ≃

(

λ0

4 +
96 g2

B−L

16 π2 ln
[

φ
µ

])

φ4

(

1 + ξ φ2

m2

P

)2 , (14)

R	



B-L	symmetry	breaking	via		

B-L	gauge	boson	(Z’	boson)	mass	
	
			
Heavy	Majorana	neutrino	mass	

Mass	scale	is	controlled	
by	B-L	Sym.	Br.	scale		
	
	
B-L	sym	breaking	also	
generates	RHN	mass		

New	Yukawa	terms	in	Lagrangian	

1 Introduction

The dark matter relic abundance is measured at the 68% limit as [?]

ΩDMh2 = 0.1198± 0.0015. (1)

xΦ = 1 (2)

U(1)X = U(1)Y ⊕ U(1)B−L (3)

xH → 0 (4)

xH → ∞ (5)

Z ′ (6)

αX =
g2X
4π

(7)

mZ′ (8)

xH (9)

mDM (10)

mZ′ = 4 TeV (11)

xH = 0 (12)

αX = 0.027 (13)

αX = 10−4.5, 10−4, 10−3.5, 10−3, 10−2.5, 10−2, 10−1.75 (14)

LY ukawa ⊃ −
∑

i,j

Y ij
D ℓ

i
LHN j

R − 1

2

∑

k

Y k
NΦN

k C
R Nk

R + h.c., (15)

U(1)Y

U(1)B−L

U(1)X In this section, we evaluate the relic abundance of the dark matter NR and identify

an allowed parameter region that satisfies the upper bound on the dark matter relic density of

ΩDMh2 ≤ 0.1213. The dark matter relic abundance is evaluated by integrating the Boltzmann

equation given by

dY

dx
= − s⟨σv⟩

xH(mDM)

(
Y 2 − Y 2

EQ

)
, (16)

where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of
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Seesaw	mechanism	aier	EW	sym.	breaking		



DM	candidate	is	sQll	missing	in	TeV-scale	minimal	B-L	model	

There	have	been	many	proposal	for	introducQon	of	DM	parQcles		
Concise	model:	no	extension	of	the	parQcle	content		

Ø  Assigning	odd	parity		
					for	one	RHN	
		
Ø  The	others	are	all	even	

SU(3)c SU(2)L U(1)Y U(1)B−L Z2

N j
R 1 1 0 −1 +

NR 1 1 0 −1 −
Φ 1 1 0 +2 +

Table 1: The particle content of the minimal U(1)B−L extended SM with Z2 parity. In addition
to the SM particle content, the three right-handed neutrinos N j

R (j = 1, 2) and NR and a
complex scalar Φ are introduced. The Z2 parity is also introduced, under which the right-
handed neutrino NR is odd, while the other fields are even.

1 Introduction

ΩDMh
2 ≃ 0.12

V (φ) =
1

4
λ(φ)

(
φ2 − v2

)2
(1)

mh = 126 GeV (2)

Mt = 173.34 GeV (3)

αs(MZ) = 0.1184 (4)

λ(µ ≃ 1010 GeV) = 0 (5)

λ ≃ 0.13 (6)

∆m2
H = (7)

≃ − Y 2
t

16π2
Λ2 (8)

∆mψ ∼ mψ logΛ (9)

m2
φ +∆m2

φ = (mψ +∆mψ)
2 (10)

WY = Y ij
D N c

i HuLj (11)

λBL (12)

ψ (13)

⟨φ⟩ (14)

MBL = 1 TeV, mφ = 2 TeV mÑc
i
= 8 TeV, (15)

⟨φ⟩ =
−m2

φ

g2BL

= 6 TeV (16)

mZ′ = 2.8 TeV (17)

αBL =
1

40
(18)

χ1 = cos θ ψ + sin θ λBL (19)

χ2 = − sin θ ψ + cos θ λBL (20)

mχ1 ∼
1

2
mZ′ (21)

νi (22)

Ni (23)

W/Z/h (24)

ℓ/ν/ν (25)

ν1L, ν2L, ν2R, ν3L, ν3R (26)

ν1L, ν2L, ν2R, ν3L, ν3R (27)

ν2R ν2R (28)

ν3R ν3R (29)

ν1L ν1L (30)

1

NO	&	Seto,		
PRD	82	(2010)	023507			

Instead,	introduce	a	parity	

J=1,2	



TeV-scale	minimal	B-L	model	with	RHN	DM		

3	right-handed	neutrinos	à	2+1		

Ø  	2	RHNs	for	the	minimal	seesaw			

ü  Neutrino	oscillaQon	data	with	one	massless	eigenstate	

Ø  	Z2-odd	1	RHN	for	thermal	Dark	Ma4er	

King,	NPB	576	(2000)	85;	
Frampton,	Glashow	&	Yanagida,	
PLB	548	(2002)	119		



More	general	gauged	U(1)	extension	of	the	SM	at	TeV	

à	Non-ExoQc	U(1)	extension			 Appelquist,	Dobrescu	&	Hopper,	
PRD	68	(2003)	035012	

U(1)X	direcQon	is	a	linear	combinaQon	of		
							the	SM	hypercharge	&	the	gauged	B-L	direcQons		

1 Introduction

The dark matter relic abundance is measured at the 68% limit as [?]

ΩDMh2 = 0.1198± 0.0015. (1)

xΦ = 1 (2)

U(1)X = U(1)Y ⊕ U(1)B−L (3)

xH → 0 (4)

xH → ∞ (5)

U(1)Y

U(1)B−L

U(1)X In this section, we evaluate the relic abundance of the dark matter NR and identify

an allowed parameter region that satisfies the upper bound on the dark matter relic density of

ΩDMh2 ≤ 0.1213. The dark matter relic abundance is evaluated by integrating the Boltzmann

equation given by

dY

dx
= − s⟨σv⟩

xH(mDM)

(
Y 2 − Y 2

EQ

)
, (6)

where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of

the dark matter number density to the entropy density s) of the dark matter particle, YEQ is

the yield of the dark matter particle in thermal equilibrium, and ⟨σv⟩ is the thermal average

of the dark matter annihilation cross section times relative velocity. Explicit formulas of the

quantities involved in the Boltzmann equation are as follows:

s =
2π2

45
g⋆
m3

DM

x3
,

Y =
n

s
⟨σv⟩ ∼ 1 pb (7)

H(mDM) =

√
4π3

45
g⋆
m2

DM

MP l
,

H(T ) =

√
8π

3

ρ

M2
Pl

=

√
4π3

45
g⋆

T 2

MP l
,

n(T ) = sYEQ =
gDM

2π2

m3
DM

x
K2(x), where x =

mDM

T
(8)
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Ø  ParQcle	contents	=	the	B-L	model	
Ø  Anomaly	Free		
Ø One	new	parameter	

corresponding	to	angle	
angle		



Ø  The	minimal	B-L	model	is	in	the	limit	of		
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where MP l = 1.22×1019 GeV is the Planck mass, gDM = 2 is the number of degrees of freedom

for the dark matter particle, g⋆ is the effective total number of degrees of freedom for particles

in thermal equilibrium (in the following analysis, we use g⋆ = 106.75 for the SM particles), and

1

TeV-scale	minimal	U(1)X	model	with	RHN	DM		

SU(3)c SU(2)L U(1)Y U(1)X Z2

qiL 3 2 1/6 (1/6)xH + (1/3) +
ui
R 3 1 2/3 (2/3)xH + (1/3) +

diR 3 1 −1/3 −(1/3)xH + (1/3) +
ℓiL 1 2 −1/2 (−1/2)xH − 1 +
eiR 1 1 −1 (−1)xH − 1 +
H 1 2 −1/2 (−1/2)xH +
N j

R 1 1 0 −1 +
NR 1 1 0 −1 −
Φ 1 1 0 +2 +

Table 1: The particle content of the minimal U(1)X extended SM with Z2 parity. In addition
to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and NR) and the U(1)X
Higgs field (Φ) are introduced. Because of the Z2 parity assignment shown here, the NR is a
unique (cold) DM candidate. The extra U(1)X gauge group is defined with a linear combination
of the SM U(1)Y and the U(1)B−L gauge groups, and the U(1)X charges of fields are determined
by two real parameters, xH and xΦ. Without loss of generality, we fix xΦ = 1 throughout this
paper.

1 Introduction

The dark matter relic abundance is measured at the 68% limit as [?]

ΩDMh2 = 0.1198± 0.0015. (1)

1

J=1,2	



Phenomenology	of		
												TeV-scale	minimal	U(1)X	model	with	RHN	DM		

(1)  Z’-portal	RHN	DM		

(2)	Z’	boson	search	at	the	LHC	Run-2	

(3)	We	will	discuss	a	complementarity		
						between	DM	physics	and	LHC	physics		

RHN	DM	communicates	with	
the	SM	parQcles	through	Z’	
boson	mediated	processes	

Search	for	a	narrow	resonance	
with	the	di-lepton	final	state	at		
ATLAS	and	CMS	with	LHC	Run-2	
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•  U(1)X	gauge	coupling:		
•  Z’	boson	mass:		
•  SM	Higgs	U(1)X	charge:			
•  RHN	DM	mass:				

1 Introduction

The dark matter relic abundance is measured at the 68% limit as [?]

ΩDMh2 = 0.1198± 0.0015. (1)

xΦ = 1 (2)

U(1)X = U(1)Y ⊕ U(1)B−L (3)

xH → 0 (4)

xH → ∞ (5)

Z ′ (6)

αX =
g2X
4π

(7)

mZ′ (8)

xH (9)

mDM (10)

U(1)Y

U(1)B−L

U(1)X In this section, we evaluate the relic abundance of the dark matter NR and identify

an allowed parameter region that satisfies the upper bound on the dark matter relic density of

ΩDMh2 ≤ 0.1213. The dark matter relic abundance is evaluated by integrating the Boltzmann

equation given by

dY

dx
= − s⟨σv⟩

xH(mDM)

(
Y 2 − Y 2

EQ

)
, (11)

where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of

the dark matter number density to the entropy density s) of the dark matter particle, YEQ is

the yield of the dark matter particle in thermal equilibrium, and ⟨σv⟩ is the thermal average

of the dark matter annihilation cross section times relative velocity. Explicit formulas of the
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Cosmological	constraint	on	Z’	portal	DM	

Observed	Relic	Abundance:		

The parameters in the Higgs potential are suitably chosen for the Higgs fields to develop their

VEVs as

⟨H⟩ =
(

v√
2

0

)

, ⟨Φ⟩ =
vBL√
2
. (3)

Associated with the B−L symmetry breaking, the Majorana neutrinos N j
R (j = 1, 2), the dark

matter particle NR and the B − L gauge boson acquire their masses as

mj
N =

Y j
N√
2
vBL, mDM =

YN√
2
vBL, mZ′ = 2gBLvBL, (4)

where gBL is the U(1)B−L gauge coupling.

The dark matter particle can communicate with the SM particles in two ways. One is

through the Higgs bosons. In the Higgs potential of Eq. (2), the SM Higgs boson and the

B − L Higgs boson mix with each other in the mass eigenstates, and this Higgs boson mass

eigenstates mediate the interactions between the dark matter particle and the SM particles.

Dark matter physics with the interactions mediated by the Higgs bosons have been investigated

in [3, 5]. The analysis involves 4 free parameters: Yukawa coupling YN and 3 free parameters

from the Higgs potential after two conditions of v = 246 GeV and the SM-like Higgs boson

mass fixed to be 125 GeV are taken into account. The other way for the dark matter particle

to communicate with the SM particles is through the B − L gauge interaction with the Z ′
BL

boson. In this case, only three free parameters (gBL, mZ′ and mDM) are involved in dark matter

physics analysis. As we have stated in the previous section, we concentrate on dark matter

physics mediated by the Z ′
BL boson. When |λHΦ| ≪ 1, the Higgs bosons mediated interactions

are negligibly small, and the dark matter particle communicates with the SM particles only

through the Z ′
BL boson. For example, this situation is realized in supersymmetric extension of

our model [6], where λHΦ is forbidden by supersymmetry in the Higgs superpotential at the

renormalizable level. When squarks and sleptons are all heavier than the dark matter particles,

there is no essential difference in dark matter phenomenology between non-supersymmetric case

and supersymmetric case (see Ref. [6]). For a limited parameter choice, the Z ′
B−L portal dark

matter scenario has been investigated in [5, 6].

3 Cosmological constraint on Z ′
BL portal dark matter

The dark matter relic abundance is measured at the 68% limit as [18]

ΩDMh2 = 0.1198± 0.0015. (5)

4

Planck	2015	(68%	CL)	

Thermal	DM	relic	abundance	is	determined	by	the	Boltzmann	eq:	

Recent various cosmological observations, especially WMAP satellite [1], have estab-

lished the ΛCDM cosmological model with a great accuracy, where the energy density in

the present universe consists of about 73% of the cosmological constant (dark energy), 23%

of non-baryonic cold dark matter and just 4% of baryons. However, to clarify the identity

of the dark matter particle is still a prime open problem in cosmology and particle physics.

Many candidates for dark matter have been proposed. Among them, the neutralino in su-

persymmetric models is a suitable candidate, if the neutralino is the lightest supersymmetric

particle (LSP) and the R-parity is conserved [2].

In the case that the dark matter is the thermal relic, we can estimate its number density

by solving the Boltzmann equation [3],

dn

dt
+ 3Hn = −⟨σv⟩(n2 − n2

EQ), (1)

with the Friedmann equation,

H2 =
8πG

3
ρ, (2)

where H ≡ ȧ/a is the Hubble parameter with a(t) being the scale factor, n is the actual

number density, nEQ is the number density in thermal equilibrium, ⟨σv⟩ is the thermal

averaged product of the annihilation cross section σ and the relative velocity v, ρ is the energy

density, and G is the Newton’s gravitational constant. By using ρ̇/ρ = −4H = 4Ṫ /T +ġ∗/g∗,

where g∗ is the effective total number of relativistic degrees of freedom, in terms of the

number density to entropy ratio Y = n/s and x = m/T , Eq. (1) can be rewritten as

dY

dx
= −

s⟨σv⟩
xH

(Y 2 − Y 2
EQ), (3)

if ġ∗/g∗ is almost negligible as usual. As is well known, an approximate formula of the

solution of the Boltzmann equation can be described as

Y (∞) ≃
xd

λ
(

σ0 + 1
2σ1x

−1
d

) , (4)

with a constant λ = xs/H = 0.26(g∗S/g1/2
∗ )MP m for models in which ⟨σv⟩ is approximately

parameterized as ⟨σv⟩ = σ0 + σ1x−1 + O(x−2), where xd = m/Td, Td is the decoupling

temperature and m is the mass of the dark matter particle, and MP ≃ 1.2× 1019GeV is the

Planck mass.

Recently, the brane world models have been attracting a lot of attention as a novel higher

dimensional theory. In these models, it is assumed that the standard model particles are

2
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the dark matter number density to the entropy density s) of the dark matter particle, YEQ is

the yield of the dark matter particle in thermal equilibrium, and ⟨σv⟩ is the thermal average

of the dark matter annihilation cross section times relative velocity. Explicit formulas of the

quantities involved in the Boltzmann equation are as follows:

s =
2π2

45
g⋆
m3

DM

x3
,

H(mDM) =

√
4π3

45
g⋆
m2

DM

MPl
,

H(T ) =

√
8π

3

ρ

M2
Pl

=

√
4π3

45
g⋆

T 2

MPl
,

n(T ) = sYEQ =
gDM

2π2

m3
DM

x
K2(x), (3)

where MP l = 1.22×1019 GeV is the Planck mass, gDM = 2 is the number of degrees of freedom

for the dark matter particle, g⋆ is the effective total number of degrees of freedom for particles

in thermal equilibrium (in the following analysis, we use g⋆ = 106.75 for the SM particles), and

K2 is the modified Bessel function of the second kind. In our Z ′
BL portal dark matter scenario,

a pair of dark matter annihilates into the SM particles dominantly through the Z ′
BL exchange

in the s-channel. The thermal average of the annihilation cross section is given by

⟨σv⟩ = (sYEQ)
−2 mDM

64π4x

∫ ∞

4m2
DM

ds σ̂(s)
√
sK1

(
x
√
s

mDM

)
, (4)

where the reduced cross section is defined as σ̂(s) = 2(s−4m2
DM)σ(s) with the total annihilation

cross section σ(s), and K1 is the modified Bessel function of the first kind. The total cross
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FIG. 1. The relic abundance of the Z ′-portal RHN DM as a function of its mass (mDM ) for mZ′ = 4

TeV. In the left panel, we have fixed xH = 0 (the minimal B − L model limit) and shown the relic
abundance for various values of the gauge coupling, αX = 0.025, 0.027, 0.028 and 0.030 (solid lines
from top to bottom). In the right panel, we have fixed αX = 0.027 and shown the relic abundance for

various values of xH = −0.8, 0, 0.5 and 1.0 (solid lines from bottom to top). The two horizontal lines
denote the range of the observed DM relic density, 0.1183 ≤ ΩDMh2 ≤ 0.1213 in Eq. (5).
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Here, we have neglected all SM fermion masses and assumed mj
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0.028 and 0.030. The plots indicate the lower bound on αX ≥ 0.027 formZ′ = 4 TeV and xH = 0

in order to be able to reproduce the observed relic abundance. In addition, we can see that

the enhancement of the DM annihilation cross section via the Z ′ boson resonance is necessary

to satisfy the cosmological constraint and hence, mDM ≃ mZ′/2. The right panel shows our
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equation given by

dY

dx
= − s⟨σv⟩

xH(mDM)

(
Y 2 − Y 2

EQ

)
, (13)

where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of
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(2)	LHC	Run-2	phenomenology	

Ø  The	ATLAS	and	CMS	collaboraQons	
have	been	searching	for	Z’	boson	
resonance	with	a	dilepton		final	
state	at	the	LHC	Run-2	
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4. Interpretation of LHC Run-2 results

The upper limits of the Z’ boson production cross 
section have been obtained by ATLAS and CMS 
collaborations.

q

q̄

Z 0
l+

l�

The ATLAS and CMS collaborations are searching for 
Z’ boson resonance with dilepton final state at the LHC Run-2.

Ø Upper	bounds	on	the	cross	secQon	for	the	sequenQal	Z’	model	
have	been	obtained		

SequenQal	Z’:	heavy	vector	boson	with	the	SM	Z	coupling	

	pp	à	Z’	+X	à	ll	+X	

We	interpret	the	ATLAS	&	the	CMS	X-sec	bounds	into	U(1)_X	Z’	

Upper	bound	on										for	fixed										and					
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For	Z’	boson	mass	=4	TeV	
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Summary	

Ø We	have	considered	the	minimal	U(1)_X	extension	of	the	
Standard	Model	with	right-handed	neutrino	dark	ma4er		

•  Minimal	seesaw	with	2	RHNs	for	the	neutrino	
oscillaQon	data		

•  1	RHN	serves	as	DM	

Ø  The	RHN	DM	communicates	with	the	SM	parQcles	through	the	
Z’-boson	exchange	(Z’-portal	DM)	

Phenomenology	is	controlled	by		

•  U(1)X	gauge	coupling:		
•  Z’	boson	mass:		
•  SM	Higgs	U(1)X	charge:			
•  RHN	DM	mass:				

1 Introduction

The dark matter relic abundance is measured at the 68% limit as [?]

ΩDMh2 = 0.1198± 0.0015. (1)

xΦ = 1 (2)

U(1)X = U(1)Y ⊕ U(1)B−L (3)

xH → 0 (4)

xH → ∞ (5)

Z ′ (6)

αX =
g2X
4π

(7)

mZ′ (8)

xH (9)

mDM (10)

U(1)Y

U(1)B−L

U(1)X In this section, we evaluate the relic abundance of the dark matter NR and identify

an allowed parameter region that satisfies the upper bound on the dark matter relic density of

ΩDMh2 ≤ 0.1213. The dark matter relic abundance is evaluated by integrating the Boltzmann

equation given by

dY

dx
= − s⟨σv⟩

xH(mDM)

(
Y 2 − Y 2

EQ

)
, (11)

where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of

the dark matter number density to the entropy density s) of the dark matter particle, YEQ is

the yield of the dark matter particle in thermal equilibrium, and ⟨σv⟩ is the thermal average

of the dark matter annihilation cross section times relative velocity. Explicit formulas of the
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Summary	(cont’d)	

Ø We	have	considered	phenomenological	constraints	

•  The	observed	DM	relic	abundance		
•  LHC	Run-2	constraints	from	Z’	resonance	search	

and	idenQfied	an	allowed	parameter	region.		

These	constraints	are	complementary	with	each	other	to	
narrow	the	model	parameter	space		
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