SM & Higgs at the LHC

Peter Onyisi, on behalf of ATLAS and CMS

Pheno, 8 May 2017

Introduction

- LHC: not just an "energy frontier" machine!
 - Enormous datasets of gauge bosons, top quarks, Higgs
- What can we study?
 - Precision SM parameters
 - all the nonperturbative stuff in proton collisions: parton distribution functions, underlying event
 - can we calculate well in the SM?
 - are there hints of BSM physics in "SM-like" interactions?
 - fundamental tests
- "Beyond the Standard Model" searches require understanding the Standard Model
 - no royal road to BSM ... ?

Process	2016 yield per experiment	
$W \rightarrow \ell V$	700 x 10 ⁶	
$Z \rightarrow \ell \ell$	70 x 10 ⁶	
WZ	1.7 x 10 ⁶	
tt	30 x 10 ⁶	
inclusive H	1.9 x 10 ⁶	
ttH	18 x 10 ³	

This talk: a few selected topics!

Will generally not show both experiments' versions of an analysis...

Datasets

- 2016: superb year of LHC data delivery
 - LHC design luminosity exceeded, high uptime
 - more data than all previous years combined
 - pileup mitigation strategies in place
- Many SM & top analyses utilize lower energy/lower pileup datasets
 - may take a long time to understand systematics for a dataset at required precision

LHC 13 TeV delivered luminosity to date ~ 1.5% of HL-LHC

Cross Sections: view from 35,000 ft

Many measurements (many not in plot ...)

Good agreement of theory & data

Proton Structure: PDF

- Use high order perturbative calculations + precision data to constrain parton behavior
- e.g., W & Z differential cross sections

Multijets: QCD & Parton Shower

- Can we accurately simulate production of multiple jets (pure QCD)?
- e.g. azimuthal correlations of jets in ≥ 2 , ≥ 3 , ≥ 4 jet events

compare to a variety of calculations (different hard scatter matrix elements, parton showers). All generators have regions of difficulty

Overall, best performance from Herwig7

Electroweak Consistency

- Standard Model has many subtle dependencies between various parameters due to quantum corrections
 - on the whole good consistency seen with expectations
- LHC experiments are main game in town for improvements for several parameters

Gfitter group, EPJ C 74, 3046 (2014) (O $_{indirect}$ - O) / σ_{tot}

Particle Masses

More than just stamp-collecting!

 W, H, t masses: consistent with other EW measurements?

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} (1 + \Delta r)$$

 H, t masses: is there a deeper minimum of the Higgs potential? is SM EW vacuum metastable?

W Mass

- First measurement of m_w at the LHC
- 7 TeV data alone: plenty of statistics
- Observables:
 - charged lepton p_T
 - reconstructed W m_T
- Use Z as standard candle for calibration, tuning, method validation
- Complications:
 - pp initial state: W⁺ and W⁻ produced differently
 - large (~ 25%) contribution of cs → W: sea quarks more important than at Tevatron
 - generators don't necessarily get boson polarization right

W Mass Result

$$m_W = 80370 \pm 7(\mathrm{stat}) \pm 11(\mathrm{exp\ syst}) \pm 14(\mathrm{mod\ syst})\ \mathrm{MeV}$$

- Largest experimental systematics: lepton energy/momentum scale
- Largest modeling systematics are parton distribution functions, parton showers
 - relies on correlation of higher-order
 QCD corrections in W & Z
- Precision better than LEP combination, not far from Tevatron combination
- Better consistency with global EW fit than before

1701.07240, sub. to EPJ C

Higgs Mass

- Use fully-reconstructible decays $H \rightarrow 4 \ell$ and $H \rightarrow \gamma \gamma$
 - Great potential for improvement: 4 ℓ stats dominated

- Run 2 CMS H \rightarrow 4 ℓ mass measurement
 - H \rightarrow 4 ℓ : in concert with other Higgs properties measurements

$$m_H = 125.26 \pm 0.20 ({\rm stat}) \pm 0.08 ({\rm syst}) \; {\rm GeV}$$

 Better precision than LHC Run 1 combo (49 MeV smaller uncertainty than expected) CMS-HIG-16-041

Top Mass

- Standard technique: test per-event compatibility of events with various mass hypotheses
 - Full/partial reconstruction, usually involving b-jets; could use J/ψ or B-hadron flight distance as proxy for b quark
 - Subject to jet and b-jet energy scale systematics, details of nonperturbative QCD in events
 - Also, what does MC generator top mass actually mean?
 Potentially O(GeV) shift between generator and "pole" mass
 - Top Yukawa coupling not expressed in pole scheme
- Alternative methods for pole mass:
 - measure tt cross section
 - shape of tt+1 jet total invariant mass

Theoretically under better control

Top Mass Examples

"standard" analysis: all-hadronic top decays

plotted: m(t)/m(W)

$$m_{\star} = 173.72 \pm 0.55 \text{ (stat)} \pm 1.01 \text{ (syst)} \text{ GeV}$$

1702.07546, sub to JHEP

Interpret cross section from dileptonic decays (pole mass)

still depends on generator mass through acceptance

$$m_{t} = 176.7 + 3.0 - 2.8 \text{ GeV}$$

Phys Lett B 728, 496 (2014)

Top Mass Summary

- Standard methods are systematics limited at the ~ 0.5 GeV level
 - CMS projects ~ 0.2 GeV for HL-LHC
- Pole measurements at best ~ 1.8 GeV

CMS-PAS-FTR-13-017

Electroweak Interactions

- Multiboson final states: check if rates, kinematics consistent with vertices of SM
 - e.g., γZZ, ZZZ vertices forbidden; higher-dim operators typically more important at higher momentum
 - probe anomalous *quartic* couplings with e.g. $\gamma\gamma \rightarrow WW$

WWZ aTGC

γγWW aQGC

Light-by-Light Scattering

- Process γγ → γγ is predicted in QED
 - completely non-classical (nonlinearity in E, B fields superposition fails)
 - lasers not yet intense enough
- At LHC: Collide the electric fields of relativistic lead nuclei
 - equivalent to colliding intense photon beam
 - signature: two photons + nothing; Pb ions vanish down beampipe
 - first evidence (4.4 σ) for $\gamma\gamma \rightarrow \gamma\gamma$

1702.01625 (sub. to Nature Physics)

Observed rate $\sim (1.6 \pm 0.7) \times \text{theory}$

Top Quark Interactions: tWb Vertex

Probe strength of vertex with single top (electroweak) production

Polarization of W in tt events

 $|f_{lv}V_{th}| (= |V_{th}| \text{ in SM})$

see also EPJ C 77, 264 (2017)

tt+vector boson

 Probe tZ, ty couplings; measure backgrounds for new physics searches

 $\sigma(t\bar{t}\gamma)$ x BR:

Exp: 515 ± 108

Theo: 592 ± 71 (scale) ± 30 (PDF)

Simultaneous measurement of $\sigma(t\bar{t}Z)$, $\sigma(t\bar{t}W)$

SM Higgs: Plan

- First phase of h(125) characterization "done"
 - no O(1) departures from SM
- Next phase:
 - precision gauge boson interactions;
 offshell couplings
 - confirm + precisely measure third generation fermion couplings
 - explore 2nd gen fermion couplings
 - further use of kinematic distributions to probe new physics (and SM) – EFT, simplified template cross sections, pseudo-observables...
 - high[er] precision mass

13 vs 8 TeV: $\sigma(H)$ up $\times 2$ (ttH up $\times 4$)

Matched by progress in theory:

- → N³LO inclusive ggF cross section
- → NNLO differential ggF
- → NLO interference between offshell H and gg → VV
- → Updated generators

State of Play after Run 1

ATLAS + CMS JHEP 08(2016) 045

h(125) in ZZ, WW decays: compatible with $J^P = O^+$

From experiment combo: Observation of ggF, VBF Evidence for VH Evidence for ttH (!)

Observation of H \rightarrow TT Significance of H \rightarrow bb still < 3 σ !

Production process	Measured significance (σ)	Expected significance (σ)	
VBF	5.4	4.6	
WH	2.4	2.7	
ZH	2.3	2.9	
VH	3.5	4.2	
ttH	4.4	2.0	
Decay channel			
H ightarrow au au	5.5	5.0	
$H \rightarrow bb$	2.6	3.7	

SM Higgs: Channels

Comprehensive set of measurements/searches for "standard" production/decay modes

Also searches for rare decays e.g. H $\rightarrow \mu\mu$, Z γ , $\gamma J/\psi$, $\gamma \phi$

√ = done since
Run 1 combination

$H \rightarrow 4 \ell$

- High resolution channel, good S/B
- probe production mechanisms by kinematics of other objects in event
- Lepton angles give access to Higgs spin, parity
- Low stats limit reach for rare production modes

CMS-PAS-HIG-16-041

$H \rightarrow 4\ell$ Cross Sections

- Report a cross section, not just a ratio to expectation
- Also differential cross sections

"simplified template cross sections" ratio to SM ($|y_{H}| < 2.5$)

ATLAS 4 \ell, yy Combination

γγ: better sensitivity for rarer production modes

ATLAS-CONF-2016-081

ttH

- Follow up excesses in Run 1
- Combine searches in yy, bb, WW/TT
- Both experiments exceed Run 1 sensitivity
- Proper handling of systematics increasingly important

CMS-PAS-HIG-17-004 **CMS** Preliminary **CMS** Preliminary 35.9 fb⁻¹ (13 TeV) Events I[±]I[±], post-fit (SM prediction) 120 → Data WZ Non-prompt 70<u>-</u>

ATLAS-CONF-2016-080

CMS-PAS-HIG-16-020

ttH Status

- Creeping up on 3σ significance per experiment
 - observed significance > expected [best fit σ higher than SM]
- No single dominant channel
- Can we say we have "evidence" already?

Future

- Many studies done to probe requirements for HL-LHC
 - Precision physics a main driver for HL-LHC
- Example: many studies focused on HH prospects
 - SM sensitivity still a challenge...

ATL-PHYS-PUB-2017-001

Summary

- Probing the Standard Model in great detail is mandatory
 - Test the consistency of the electroweak sector
 - Show we can calculate complex processes
 - Understand backgrounds for difficult new physics searches
- LHC is a factory for W, Z, top, Higgs
 - with large datasets, able to do exquisite precision and rare process searches
 - so far good consistency with SM
- Can make important improvements with additional integrated luminosity
- Future is bright!

Parallel "SM" (Experiment) Talks

Top (Mon 2 – 4 pm)

Yao: ATLAS $t\bar{t}$ +X, $\sigma(t\bar{t})$

Suster: ATLAS single top

Zhu: ATLAS top mass, properties

Higgs (Mon 2 – 4 pm)

Bortolotto, ATLAS Higgs → diboson

Bethani, ATLAS Higgs → fermions, ttH

Rossin, CMS HH

BSM Higgs I (Mon 4:30 – 6:30 pm)

Veatch, ATLAS rare + exotic Higgs decays

QCD & EW (Tue 2 - 4 pm)

Vachon, ATLAS γ+jets

Staroba, ATLAS vector boson production

Becker, ATLAS multiboson production

Validating Calculations

- Acceptable prediction for pp → WZ rate requires NNLO calculation
- But WZ+jets multiplicity shape better modeled by merged multileg
 LO than NLO at high # jets

Phys. Lett. B 762 1 (2016)

WV ℓvjj search

 aTGC effects most relevant at high momenta → use "boosted" techniques to search for high-momentum vector boson pairs

Peaking bkg: top, SM WV

Example of k-formalism

Can increase all κ coherently and keep same on-shell μ if increase $\Gamma_{\!_H}$ to compensate (invisible/undetected decays)

$H \rightarrow \mu\mu$

- Search for resonant dimuon events in ggF and VBF production (separated by BDT), additional kinematics
- Fit dimuon mass spectra

ATLAS-CONF-2017-014

$$\mu = -0.11^{+1.49}_{-1.51} \quad Run \ 2$$
 < 3.0 (3.1 exp) Run 2 < 2.7 (2.8 exp) Run 1+2

VBF γ + H, H \rightarrow bb

- Roundabout method to access VBF
 Higgs production: use radiated high-p_T
 photon for triggering
 - better S/B as gg-initiated bkg suppressed
- Sensitivity similar to direct VBF search, but much smaller systematics

ATLAS-CONF-2016-063

$$\mu = -3.9^{+2.8}_{-2.7}$$

< 4.0 (6.0 exp)

Alternative "generator mass" methods

$VH, H \rightarrow bb$

- Most powerful H → bb search mode (though ttH not far behind)
 - large SM backgrounds from V+jets, VV, tt
 - search in channels with 0, 1, 2 e/μ
 - aggressive use of BDT & profile likelihood fits to isolate signal & measure background parameters in data

 $\mu_{\text{diboson}} = 0.91 \pm 0.17 \text{ (stat)}_{-0.27}^{+0.32} \text{ (syst)}$

ATLAS-CONF-2016-091

 $H \rightarrow bb$ significance: 0.42σ (1.94 σ exp) 3.0 σ (3.2 σ exp) evidence for $(W/Z)Z, Z \rightarrow bb$

	gluon-gluon fusion	vector boson fusion	VH	ttH
$H \rightarrow \gamma \gamma$	✓	✓	✓	√
$H \rightarrow ZZ$	✓	✓	✓	√
$H \rightarrow TT$	✓	✓	✓	√
$H \rightarrow WW$	✓	✓	✓	√
$H \rightarrow bb$		✓	✓	√
$H \rightarrow \mu\mu$	✓	✓		