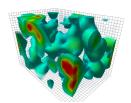
Recent Developments in Lattice Gauge Theory

Christoph Lehner (BNL)

A one-slide introduction to LGT

- Discretize Euclidean space-time on a lattice to regulate QFT and define the path integral
- ► Matter fields live on lattice sites and gauge fields on links between them (Wilson's explicit gauge invariance)
- Perform integral over fermions analytically, integral over bosons using Monte-Carlo methods on large computers
- ▶ In the following we therefore draw diagrams only with respect to quarks, photons, and leptons; gluons and their effects are generated by the statistical average.



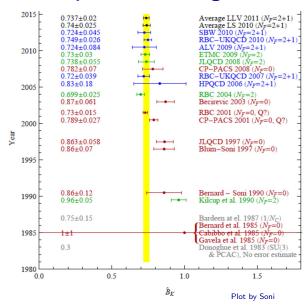
Lattice QCD action density, Leinweber, CSSM, Adelaide, 2003

Exponentially growing capabilities

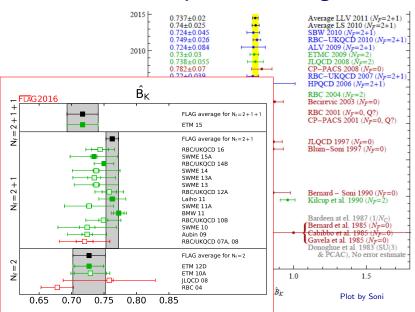
- The field tracks Moore's law of exponential growth of computing power
 - ▶ Mike Creutz's first computation of $\langle F_{\mu\nu}^2 \rangle$ in QCD on a 6⁴ lattice almost 40 years ago took about 10^6 floating-point operations to complete
 - ▶ The state-of-the-art lattice QCD calculation of the $(g-2)_{\mu}$ hadronic light-by-light contribution by RBC/UKQCD on a 10^5 larger volume at physical pion mass in a 6.4fm box took 10^{22} floating-point operations to complete

 Combined with theory advances: precision first-principles hadronic physics directly from the QCD Lagrangian now possible

A historical example: kaon mixing



A historical example: kaon mixing



Recent developments (a selection)

▶ The muon g-2

► Flavor physics

► BSM/Strong dynamics

The muon g-2

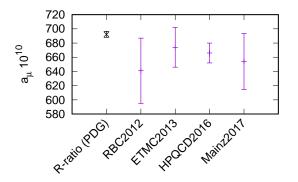
Theory status – summary

Contribution	Value $ imes 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PARC E34 goal		≈ 1.6

A reduction of uncertainty for HVP and HLbL is needed. A systematically improvable first-principles calculation is desired.

First-principles approach to HVP LO

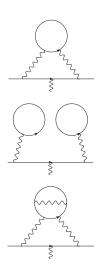
Recent lattice QCD results:



On-going efforts by BMWc, ETMC, HPQCD+FNAL/MILC, Mainz, RBC+UKQCD, \dots

Related new result by BMWc (arXiv:1612.02364): published data not sufficient to compute a_{μ} , however, indicative of total uncertainty of an a_{μ} calculation: $\delta a_{\mu} = O(20 \times 10^{-10})$

First-principles approach to HVP LO



Quark-connected piece with by far dominant part from up and down quark loops, $\mathcal{O}(700\times 10^{-10})$

Quark-disconnected piece, $-9.6(4.0) \times 10^{-10}$

Phys.Rev.Lett. 116 (2016) 232002

QED corrections, $\mathcal{O}(10 \times 10^{-10})$

HVP quark-connected contribution

Biggest challenge to direct calculation at physical pion masses is to control statistics and potentially large finite-volume errors.

Statistics: for strange and charm solved issue, for up and down quarks existing methodology less effective

Finite-volume errors are exponentially suppressed in the simulation volume but may be sizeable

HVP quark-connected contribution

Starting from the vector current

$$J_{\mu}(x) = i \sum_{f} Q_{f} \overline{\Psi}_{f}(x) \gamma_{\mu} \Psi_{f}(x)$$

we may write

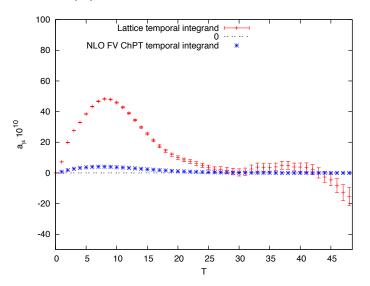
$$a_{\mu}^{\mathrm{HVP}} = \sum_{t=0}^{\infty} w_t C(t)$$

with

$$C(t) = \frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2} \langle J_j(\vec{x},t) J_j(0) \rangle$$

and w_t capturing the photon and muon part of the diagram (Bernecker-Meyer 2011).

Integrand $w_T C(T)$ for the light-quark connected contribution:



 $m_\pi=140$ MeV, a=0.11 fm (RBC/UKQCD 48^3 ensemble) Statistical noise from long-distance region

Complete first-principles analysis

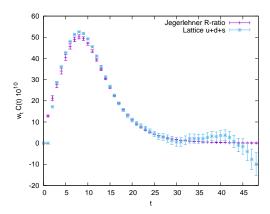
▶ Currently the statistical uncertainty for a pure first-principles analysis in the continuum limit is at the $\Delta a_{\mu} \approx 15 \times 10^{-10}$ level

Contribution	Value $ imes 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
Fermilab E989 target		≈ 1.6

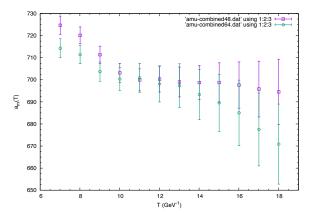
- Sub-percent statistical error achievable with a few more months of running
- ▶ While we are waiting for more statistics . . .

Combined lattice and dispersive analysis

We can use the dispersion relation to overlay experimental e^+e^- scattering data (Bernecker, Meyer 2011). Below the experimental result is taken from Jegerlehner 2016:



The lattice data is precise at shorter distances and the experimental data is precise at longer distances. We can do a combined analysis with lattice and experimental data: $a_{\mu} = \sum_{t=0}^{T} w_{t} C^{\text{lattice}}(t) + \sum_{t=T+1}^{\infty} w_{t} C^{\exp}(t)$



Errors range from \sim 0.5 to 1.2 % for T \lesssim 12 (GeV $^{-1}$); this is a promising way to reduce the overall uncertainty on a short time-scale (C.L. ICHEP2016).

Complementary suggestion in terms of Mellin moments by de Rafael (arXiv:1702.06783).

29

HVP quark-disconnected contribution

First results at physical pion mass with a statistical signal Phys.Rev.Lett. 116 (2016) 232002

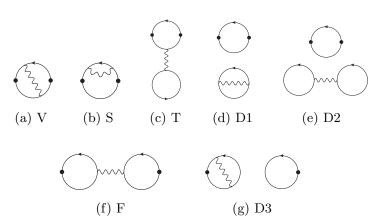
Statistics is clearly the bottleneck; calculation was a potential road-block of a first-principles calculation for a long time; due to very large pion-mass dependence calculation at physical pion mass is crucial.

New stochastic estimator allowed RBC/UKQCD to get result

$$a_{\mu}^{\mathrm{HVP}\ (\mathrm{LO})\ \mathrm{DISC}} = -9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} \times 10^{-10}$$

from a modest computational investment (\approx 1M core hours).

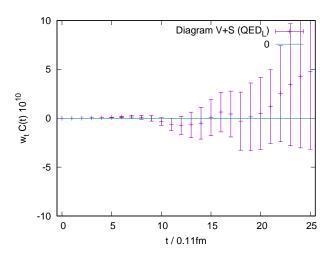
HVP QED contribution



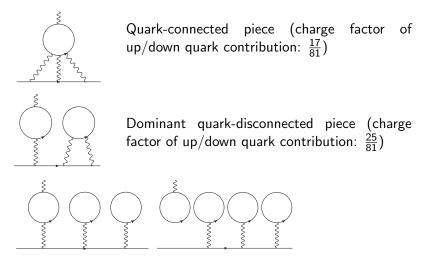
New method: use importance sampling in position space and local vector currents

HVP QED+strong IB contributions

Example: HVP QED diagram V+S



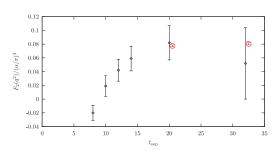
The Hadronic Light-by-Light contribution



Sub-dominant quark-disconnected pieces (charge factors of up/down quark contribution: $\frac{5}{81}$ and $\frac{1}{81}$)

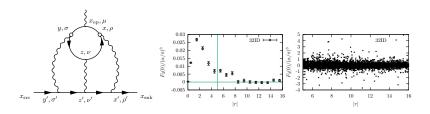
All results below are from: T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C.L., Phys. Rev. D 93, 014503 (2016)

Compute quark-connected contribution with new computational strategy



yields more than an order-of-magnitude improvement (red symbols) over previous method (black symbols) for a factor of \approx 4 smaller cost.

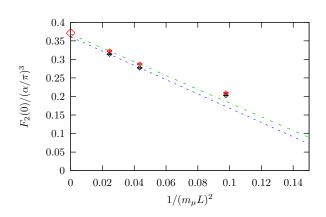
New stochastic sampling method



Stochastically evaluate the sum over vertices x and y:

- ▶ Pick random point *x* on lattice
- ▶ Sample all points y up to a specific distance r = |x y|, see vertical red line
- ▶ Pick y following a distribution P(|x y|) that is peaked at short distances

Cross-check against analytic result where quark loop is replaced by muon loop



Current status of the HLbL

T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C.L., PRL118(2017)022005

$$a_{\mu}^{\text{cHLbL}} = \frac{g_{\mu} - 2}{2} \bigg|_{\text{cHLbL}} = (0.0926 \pm 0.0077) \left(\frac{\alpha}{\pi}\right)^{3}$$

$$= (11.60 \pm 0.96) \times 10^{-10} \text{ (11)}$$

$$a_{\mu}^{\text{dHLbL}} = \frac{g_{\mu} - 2}{2} \bigg|_{\text{dHLbL}} = (-0.0498 \pm 0.0064) \left(\frac{\alpha}{\pi}\right)^{3}$$

$$= (-6.25 \pm 0.80) \times 10^{-10} \text{ (12)}$$

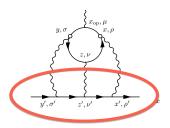
$$a_{\mu}^{\text{HLbL}} = \frac{g_{\mu} - 2}{2} \bigg|_{\text{HLbL}} = (0.0427 \pm 0.0108) \left(\frac{\alpha}{\pi}\right)^{3}$$

$$= (5.35 \pm 1.35) \times 10^{-10} \text{ (13)}$$

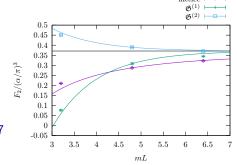
Makes HLbL an unlikely candidate to explain the discrepancy!

Next: finite-volume and lattice-spacing systematics; sub-leading diagrams

Finite-volume errors of the HLbL



Remove power-law like finite-volume errors by computing the muon-photon part of the diagram in infinite volume (C.L. talk at lattice 2015 and Green et al. 2015, PRL115(2015)222003; Asmussen et al. 2016, Pos,LATTICE2016 164)



Now completed arXiv:1705.01067 with improved weighting function.

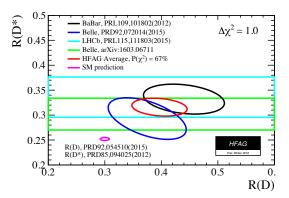
Next step: combine weighting function with existing QCD data

Flavor physics

Lepton flavor universality violation

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

 $\ell=e,\mu$ for BaBar and Belle and $\ell=\mu$ for LHCb



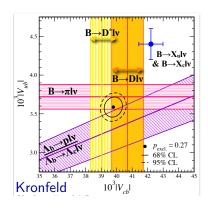
 $R(D^*)$ using HQET, R(D) from lattice

Lattice inputs:

- ▶ $B \rightarrow D\ell\nu$ near zero recoil FNAL/MILC: 1503.07237, HPQCD:1505.03925, RBC/UKQCD: Lattice2016
- ► $B \rightarrow D^*\ell\nu$ at zero recoil FNAL/MILC:1403.0635, HPQCD: Lattice2016; at non-zero recoil now being computed! However, D^* at physical pion mass unstable

Inclusive versus exclusive tensions:

Combine with $\Lambda_b \to \Lambda_c \ell \nu$ Detmold, Lehner, Meinel 1503.01421:



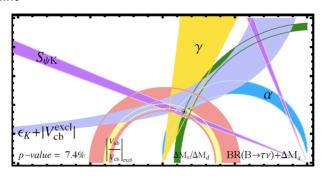
Also anomaly in $B \to K^{(*)} \mu^+ \mu^- / B \to K^{(*)} e^+ e^-$? 1704.06659, Soni talk this afternoon

Improved unitarity constraints

 $3\times$ more precise determination of

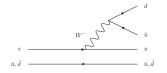
$$\xi \equiv \frac{|V_{td}|\Delta M_{B_s^0} M_{B^0}}{|V_{ts}|\Delta M_{B^0} M_{B_s^0}} = 1.211(19)$$

in FNAL/MILC PRD 93, 113016 (2016) yields new CKM constraint



Plot and fit by E. Lunghi

$$\mathbf{K} \rightarrow \pi \pi$$



Brief history of lattice effort by RBC/UKQCD:

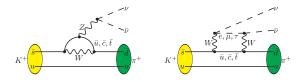
- ▶ 2011: threshold (pions at rest) computation at $m_{\pi} > m_{\pi}^{\rm phys}$
- ▶ 2012: quantitative explanation of $\Delta I = 1/2$ rule (I = 0 final state dominance)
- ▶ 2012: I = 2 final state at m_{π}^{phys} no $a \to 0$ limit
- ▶ 2015: I = 2 final state at m_{π}^{phys} with $a \to 0$ limit
- ▶ 2015: I = 0 final state at m_{π}^{phys} no $a \to 0$ limit

$$\begin{split} &\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}. \\ &\text{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left|\frac{\eta_{00}}{\eta_{\pm}}\right|^2\right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)} \end{split}$$

RBC/UKQCD result PRL 115 (2015) 212001: $\varepsilon'/\varepsilon = 1.38(5.15)(4.43) \times 10^{-4}$; Now reduced systematic error and more statistics, work on including IB

New methods

▶ Rare kaons: NA62 at CERN aims at O(10%) measurement of Br($K^+ \to \pi^+ \nu \bar{\nu}$); Xu Feng et al. working on long-distance methodology and a first-principles computation



- Inclusive $\tau \to \nu X$ decay from lattice QCD (RBC/UKQCD 2017)
- ► Inclusive semi-leptonic B decays from lattice QCD (1703.01881)

BSM/Strong dynamics

Generic features of strong dynamics models emerging

- ▶ A 0^{++} "sigma" meson, much lighter than all of the resonances except pions seen in SU(3) N_f =8 (LSD and LatKMI) and for SU(2) with N_f =2 in the sextet representation by LatHC. Now efforts underway to create a two-state EFT with parameters tuned from lattice.
- ▶ Vector meson dominance works: The relation $f_V/f_\pi = \sqrt{2}$, e.g., has been confirmed in SU(3) with N_f =8 and in SU(4) with two fermion irreps (Jay and Neil).

Progress on gauge-gravity duality and SUSY

▶ Catterall et al. now have a lattice formulation of N=4 SYM in D=4; work on lower-dimensional theory, testing gauge-gravity duality, and SUSY breaking to be presented at Lattice 2017

Thanks to E. Neil for helpful discussions

Summary and outlook

- New methods allow for a substantial reduction in uncertainty of the theory calculation of the $(g-2)_{\mu}$; a reduction of uncertainty over the currently most precise value within the next year seems possible and over five years should track Fermilab E989 precision.
- ► Lattice QCD continues to play a crucial role in understanding flavor anomalies
- New methods to compute inclusive decays from lattice QCD and long-distance effects in rare decays are being developed and will be implemented in precision calculations in the next few years.

Thank you

The setup:

$$C(t) = \frac{1}{3V} \sum_{j=0,1,2} \sum_{t'} \langle \mathcal{V}_j(t+t') \mathcal{V}_j(t') \rangle_{\mathrm{SU}(3)} \tag{1}$$

where V stands for the four-dimensional lattice volume, $\mathcal{V}_{\mu}=(1/3)(\mathcal{V}_{\mu}^{u/d}-\mathcal{V}_{\mu}^{s})$, and

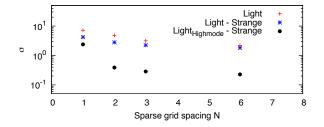
$$V_{\mu}^{f}(t) = \sum_{\vec{x}} \text{Im Tr}[D_{\vec{x},t;\vec{x},t}^{-1}(m_f)\gamma_{\mu}].$$
 (2)

We separate 2000 low modes (up to around m_s) from light quark propagator as $D^{-1} = \sum_n v^n (w^n)^\dagger + D_{\rm high}^{-1}$ and estimate the high mode stochastically and the low modes as a full volume average Foley 2005.

We use a sparse grid for the high modes similar to Li 2010 which has support only for points x_{μ} with $(x_{\mu}-x_{\mu}^{(0)})$ mod N=0; here we additionally use a random grid offset $x_{\mu}^{(0)}$ per sample allowing us to stochastically project to momenta.

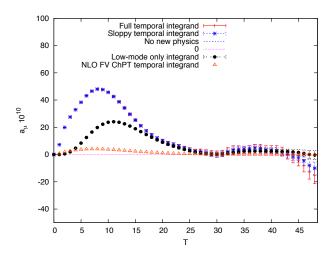
Combination of both ideas is crucial for noise reduction at physical pion mass!

Fluctuation of V_{μ} (σ):

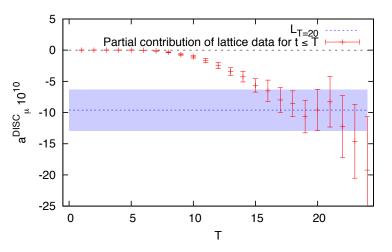


Since C(t) is the autocorrelator of \mathcal{V}_{μ} , we can create a stochastic estimator whose noise is potentially reduced linearly in the number of random samples, hence the normalization in the lower panel

Low-mode saturation for physical pion mass (here 2000 modes):

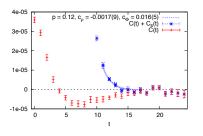


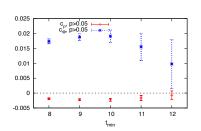
Result for partial sum $L_T = \sum_{t=0}^T w_t C(t)$:



For $t \geq$ 15 C(t) is consistent with zero but the stochastic noise is t-independent and $w_t \propto t^4$ such that it is difficult to identify a plateau region based only on this plot

Resulting correlators and fit of $C(t)+C_s(t)$ to $c_\rho e^{-E_\rho t}+c_\phi e^{-E_\phi t}$ in the region $t\in[t_{\min},\ldots,17]$ with fixed energies $E_\rho=770$ MeV and $E_\phi=1020$. $C_s(t)$ is the strange connected correlator.

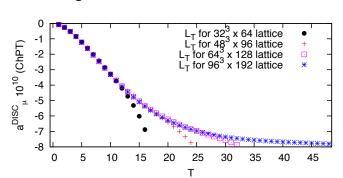




We fit to $C(t) + C_s(t)$ instead of C(t) since the former has a spectral representation.

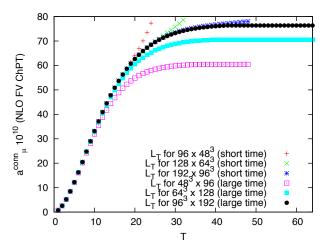
We could use this model alone for the long-distance tail to help identify a plateau but it would miss the two-pion tail

We therefore additionally calculate the two-pion tail for the disconnected diagram in ChPT:



A closer look at the NLO FV ChPT prediction (1-loop sQED):

We show the partial sum $\sum_{t=0}^{T} w_t C(t)$ for different geometries and volumes:



The dispersive approach to HVP LO

The dispersion relation

$$\Pi_{\mu\nu} (q) = i \left(q_{\mu} q_{\nu} - g_{\mu\nu} q^{2} \right) \Pi(q^{2})$$

$$\Pi(q^{2}) = -\frac{q^{2}}{\pi} \int_{4m^{2}}^{\infty} \frac{ds}{s} \frac{\text{Im}\Pi(s)}{q^{2} - s}.$$

allows for the determination of a_{μ}^{HVP} from experimental data via

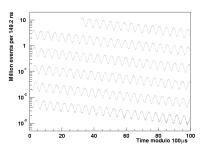
$$\begin{split} a_{\mu}^{\rm HVP\ LO} &= \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \left[\int_{4m_{\pi}^2}^{E_0^2} ds \frac{R_{\gamma}^{\rm exp}(s)\hat{K}(s)}{s^2} + \int_{E_0^2}^{\infty} ds \frac{R_{\gamma}^{\rm PQCD}(s)\hat{K}(s)}{s^2} \right] \,, \\ R_{\gamma}(s) &= \sigma^{(0)}(e^+e^- \to \gamma^* \to {\rm hadrons}) / \frac{4\pi\alpha^2}{3s} \end{split}$$

Experimentally with or without additional hard photon (ISR: $e^+e^- \rightarrow \gamma^*(\rightarrow \text{hadrons})\gamma)$

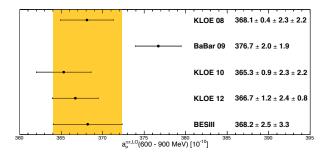
Experimental setup: muon storage ring with tuned momentum of muons to cancel leading coupling to electric field

$$\vec{\omega}_a = -\frac{q}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

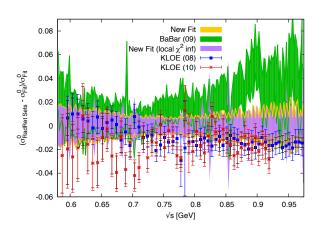
Because of parity violation in weak decay of muon, a correlation between muon spin and decay electron direction exists, which can be used to measure the anomalous precession frequency ω_a :

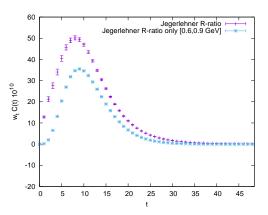


BESIII 2015 update:



Hagiwara et al. 2011:





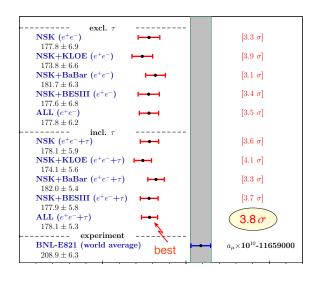
Problematic experimental region can readily be replaced by precise lattice data. Lattice also can be arbiter regarding different experimental data sets.

Jegerlehner FCCP2015 summary:

final state	range (GeV)	$a_{\mu}^{\text{had}(1)} \times 10^{10} \text{ (stat) (syst) [tot]}$	rel	abs
ρ	(0.28, 1.05)	507.55 (0.39) (2.68)[2.71]	0.5%	39.9%
ω	(0.42, 0.81)	35.23 (0.42) (0.95)[1.04]	3.0%	5.9%
ϕ	(1.00, 1.04)	34.31 (0.48) (0.79)[0.92]	2.7%	4.7%
J/ψ		8.94 (0.42) (0.41)[0.59]	6.6%	1.9%
Υ		0.11 (0.00) (0.01)[0.01]	6.8%	0.0%
had	(1.05, 2.00)	60.45 (0.21) (2.80)[2.80]	4.6%	42.9%
had	(2.00, 3.10)	21.63 (0.12) (0.92)[0.93]	4.3%	4.7%
had	(3.10, 3.60)	3.77 (0.03) (0.10)[0.10]	2.8%	0.1%
had	(3.60, 9.46)	13.77 (0.04) (0.01)[0.04]	0.3%	0.0%
had	(9.46,13.00)	1.28 (0.01) (0.07)[0.07]	5.4%	0.0%
pQCD	(13.0,∞)	1.53 (0.00) (0.00)[0.00]	0.0%	0.0%
data	(0.28,13.00)	687.06 (0.89) (4.19)[4.28]	0.6%	0.0%
total		688.59 (0.89) (4.19)[4.28]	0.6%	100.0%
Deculte for had(1) 1010 Hardete Avenuet 0045 incl				

Results for $a_{\mu}^{\rm had(1)} \times 10^{10}$. Update August 2015, incl SCAN[NSK]+ISR[KLOE10,KLOE12,BaBar,BESIII]

Jegerlehner FCCP2015 summary ($\tau \leftrightarrow e^+e^-$):



Our setup:

$$C(t) = \frac{1}{3V} \sum_{j=0,1,2} \sum_{t'} \langle \mathcal{V}_j(t+t') \mathcal{V}_j(t') \rangle_{SU(3)}$$
 (3)

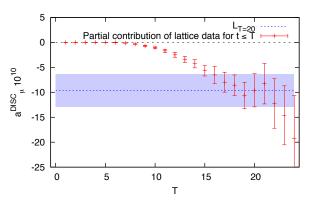
where V stands for the four-dimensional lattice volume, $\mathcal{V}_{\mu}=(1/3)(\mathcal{V}_{\mu}^{u/d}-\mathcal{V}_{\mu}^{s})$, and

$$V_{\mu}^{f}(t) = \sum_{\vec{x}} \text{Im Tr}[D_{\vec{x},t;\vec{x},t}^{-1}(m_f)\gamma_{\mu}]. \tag{4}$$

We separate 2000 low modes (up to around m_s) from light quark propagator as $D^{-1} = \sum_n v^n (w^n)^\dagger + D_{\rm high}^{-1}$ and estimate the high mode stochastically and the low modes as a full volume average Foley 2005.

We use a sparse grid for the high modes similar to Li 2010 which has support only for points x_{μ} with $(x_{\mu}-x_{\mu}^{(0)})$ mod N=0; here we additionally use a random grid offset $x_{\mu}^{(0)}$ per sample allowing us to stochastically project to momenta.

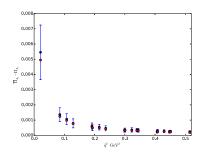
Study $L_T = \sum_{t=T+1}^{\infty} w_t C(t)$ and use value of T in plateau region (here T=20) as central value. Use a combined estimate of a resonance model and the two-pion tail to estimate systematic uncertainty.

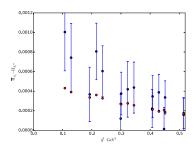


Combined with an estimate of discretization errors, we find

$$a_{\mu}^{\text{HVP (LO) DISC}} = -9.6(3.3)_{\text{stat}}(2.3)_{\text{sys}} \times 10^{-10}$$
. (5)

From Aubin et al. 2015 (arXiv:1512.07555v2)



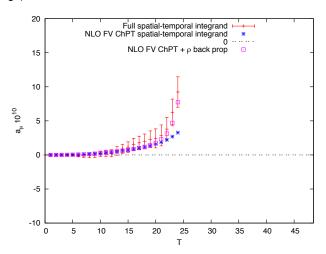


MILC lattice data with $m_\pi L=$ 4.2, $m_\pi\approx$ 220 MeV; Plot difference of $\Pi(q^2)$ from different irreps of 90-degree rotation symmetry of spatial components versus NLO FV ChPT prediction (red dots)

While the absolute value of a_{μ} is poorly described by the two-pion contribution, the volume dependence may be described sufficiently well to use ChPT to control FV errors at the 1% level; this needs further scrutiny

Aubin et al. find an O(10%) finite-volume error for $m_{\pi}L=4.2$ based on the $A_1-A_1^{44}$ difference (right-hand plot)

Compare difference of integrand of $48 \times 48 \times 96 \times 48$ (spatial) and $48 \times 48 \times 48 \times 96$ (temporal) geometries with NLO FV ChPT $(A_1 - A_1^{44})$:



$$m_\pi = 140$$
 MeV, $p^2 = m_\pi^2/(4\pi f_\pi)^2 \approx 0.7\%$

