How to optimize Higgs Measurements using Information Geometry

work with Johann Brehmer, Kyle Cranmer and Tilman Plehn

arXiv: 1612.05261

Felix Kling

Pheno 2017

What we learned from Johann's talk

The Fisher information encodes the maximum sensitivity of observables to model parameters for a given experiment.

$$f(x|\boldsymbol{\theta}) \longrightarrow I_{ij}(\boldsymbol{\theta}) = -E\left[\frac{\partial^2 \log f(x|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_i \partial \boldsymbol{\theta}_j} \middle| \boldsymbol{\theta} \right] \longrightarrow \operatorname{cov}[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}_0] \le I_{ij}^{-1}(\boldsymbol{\theta}_0)$$

probability distribution Fisher Information

Cramer-Rao Bound

What we learned from Johann's talk

The Fisher information encodes the maximum sensitivity of observables to model parameters for a given experiment.

$$f(x|\boldsymbol{\theta}) \longrightarrow I_{ij}(\boldsymbol{\theta}) = -E\left[\frac{\partial^2 \log f(x|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_i \partial \boldsymbol{\theta}_j}\middle|\boldsymbol{\theta}\right] \longrightarrow \operatorname{cov}[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}_0] \le I_{ij}^{-1}(\boldsymbol{\theta}_0)$$

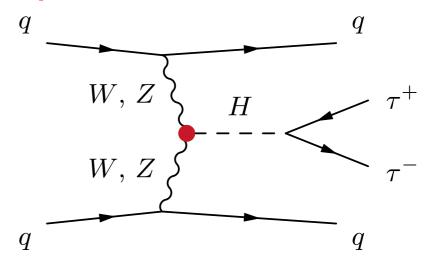
probability distribution Fisher Information

Cramer-Rao Bound

Application:

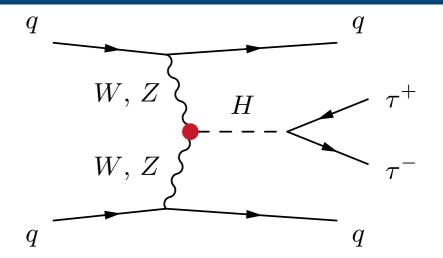
Constraining Higgs Effective Field Theory in Weak Boson Fusion

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{f_i^{d=6}}{\Lambda^2} \mathcal{O}_i^{d=6} + \cdots$$



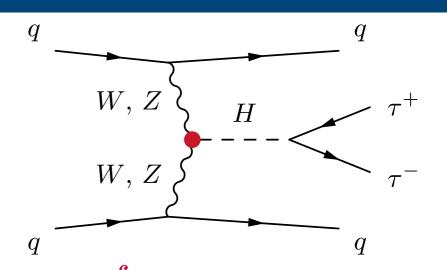
Weak Boson Fusion:

- well known probe of Higgs-gauge structure
- interesting kinematics of tagging jets see hep-ph/9808468, hep-ph/0105325, 1212.0843



Weak Boson Fusion:

- well known probe of Higgs-gauge structure
- interesting kinematics of tagging jets see hep-ph/9808468, hep-ph/0105325, 1212.0843



Theory Language: Dim-6-Operators of HEFT: $\mathcal{L}\supset\sum_i \frac{f_i}{\Lambda^2}\mathcal{O}_i$ - total rate: $\mathcal{O}_{\phi,2}=\frac{1}{2}\,\partial^\mu(\phi^\dagger\phi)\,\partial_\mu(\phi^\dagger\phi)$

- new kinematic structures:

$$\mathcal{O}_{W} = i \frac{g}{2} (D^{\mu} \phi)^{\dagger} \sigma^{k} (D^{\nu} \phi) W_{\mu\nu}^{k} \quad \mathcal{O}_{WW} = -\frac{g^{2}}{4} (\phi^{\dagger} \phi) W_{\mu\nu}^{k} W^{\mu\nu k}$$

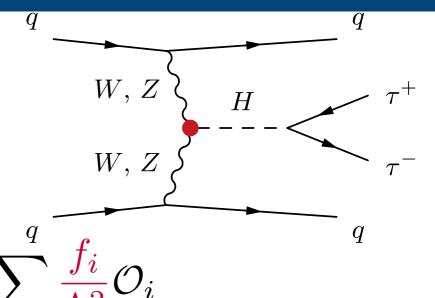
$$\mathcal{O}_{B} = i \frac{g}{2} (D^{\mu} \phi^{\dagger}) (D^{\nu} \phi) B_{\mu\nu} \qquad \mathcal{O}_{BB} = -\frac{g'^{2}}{4} (\phi^{\dagger} \phi) B_{\mu\nu} B^{\mu\nu}$$

- model parameters: wilson coefficients: $heta = (f_{\phi,2},\,f_W,\,f_{WW},\,f_B,\,f_{BB})$

Weak Boson Fusion:

- well known probe of Higgs-gauge structure
- interesting kinematics of tagging jets

see hep-ph/9808468, hep-ph/0105325, 1212.0843



Theory Language: Dim-6-Operators of HEFT: $\mathcal{L} \supset \sum_{i=1}^{q} \frac{f_i}{\Lambda^2} \mathcal{O}_i$

- total rate: $\mathcal{O}_{\phi,2} = \frac{1}{2} \, \partial^{\mu} (\phi^{\dagger} \phi) \, \partial_{\mu} (\phi^{\dagger} \phi)$
- new kinematic structures:

$$\mathcal{O}_{W} = i \frac{g}{2} (D^{\mu} \phi)^{\dagger} \sigma^{k} (D^{\nu} \phi) W_{\mu\nu}^{k} \quad \mathcal{O}_{WW} = -\frac{g^{2}}{4} (\phi^{\dagger} \phi) W_{\mu\nu}^{k} W^{\mu\nu k}$$

$$\mathcal{O}_{B} = i \frac{g}{2} (D^{\mu} \phi^{\dagger}) (D^{\nu} \phi) B_{\mu\nu} \qquad \mathcal{O}_{BB} = -\frac{g'^{2}}{4} (\phi^{\dagger} \phi) B_{\mu\nu} B^{\mu\nu}$$

- model parameters: wilson coefficients: $heta=(f_{\phi,2},f_W,f_{WW},f_B,f_{BB}) rac{v^2}{\Lambda^2}$

Outline:

- I. How does the tool work?
 - 2. How well can we measure Wilson coefficients?
 - 3. Where in phase space is the information?
 - 4. How good is my analyses?
 - 5. Does the EFT series converge?

I. How does the tool work?

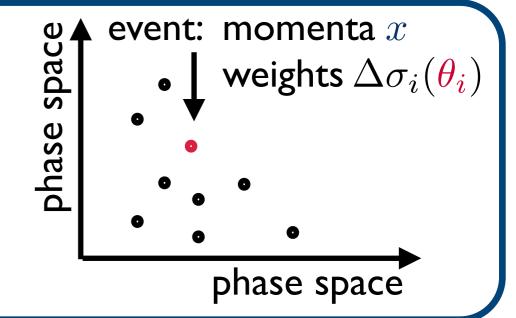
- I. Generate events via Monte Carlo: MadMax
 - modified version of MG5

see 1311.2591, 1607.07441

- modeling detector response

 - Smearing Efficiencies

 - Trigger Cuts Backgrounds



2. Morphing: get weights for arbitrary model θ

$$-\Delta\sigma(\theta) = \sum_{i} a_i \Delta\sigma_i$$

see ATL-PHYS-PUB-2015-047

3. Calculate Fisher Information

-
$$I_{ij}(\boldsymbol{\theta}) = L \sum_{\text{events}} \frac{1}{\Delta \sigma(\boldsymbol{\theta})} \frac{\partial \Delta \sigma(\boldsymbol{\theta})}{\partial \theta_i} \frac{\partial \Delta \sigma(\boldsymbol{\theta})}{\partial \theta_j}$$

- 4. Cramer Rao Bound defines maximal sensitivity $\cos[\theta]\theta_0 \le I_{i,i}^{-1}(\theta_0)$
 - reach for $\theta = fv^2/\Lambda^2$

2. How well can we measure Wilson coefficients?

Fisher Info at the SM:

 $\sqrt{s} = 13 \text{ TeV}$ $L \cdot \epsilon = 30 \text{ fb}^{-1}$

- How well can we constrain new physics, assuming SM is true?

$$I_{ij}(\mathbf{0}) = \begin{pmatrix} 3202 & -625 & -7 & -35 & 0 \\ -625 & 451 & -110 & 23 & -2 \\ -7 & -110 & 244 & -6 & 3 \\ -35 & 23 & -6 & 4 & 0 \\ 0 & -2 & 3 & 0 & 0 \end{pmatrix} \begin{matrix} \mathcal{O}_{\phi,2} \\ \mathcal{O}_{W} \\ \mathcal{O}_{BB} \\ \mathcal{O}_{BB} \end{matrix}$$

- Cramer-Rao bound: minimum measurement error $\Delta \theta \geq 1/\sqrt{I}$
- $\mathcal{O}_{\phi,2}$ direction can be measured best, followed by $\mathcal{O}_W, \mathcal{O}_{WW}$. Large mixing between operators

$$\Delta(f_{\phi,2}v^2/\Lambda^2) \gtrsim 0.02$$
 $\Delta(f_W v^2/\Lambda^2) \gtrsim 0.13$

- distance measure $d^2 = I_{ij}(\theta_0)(\theta^i \theta_0^i)(\theta^j \theta_0^j)$
 - ~ unlikeliness to measure θ if θ_0 is true 'in sigmas'

-0.050.00 0.10 0.05 $f_W v^2/\Lambda^2$

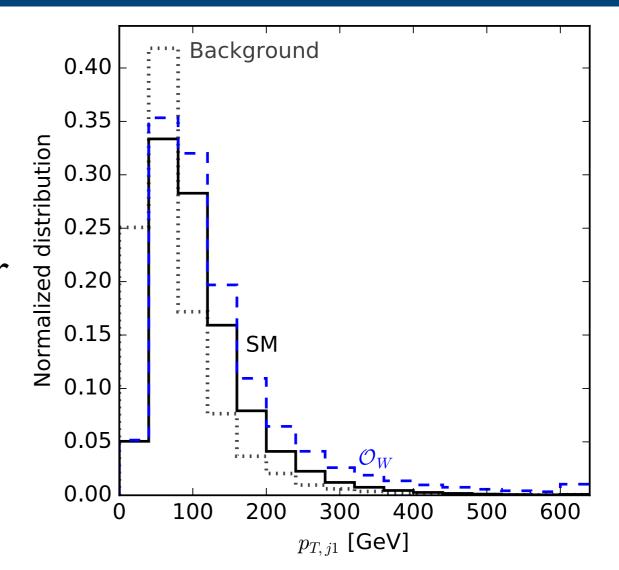
0.10

0.05

Contours of distance -0.10 d=1,2,3,4,5 from SM -0.10 -0.05

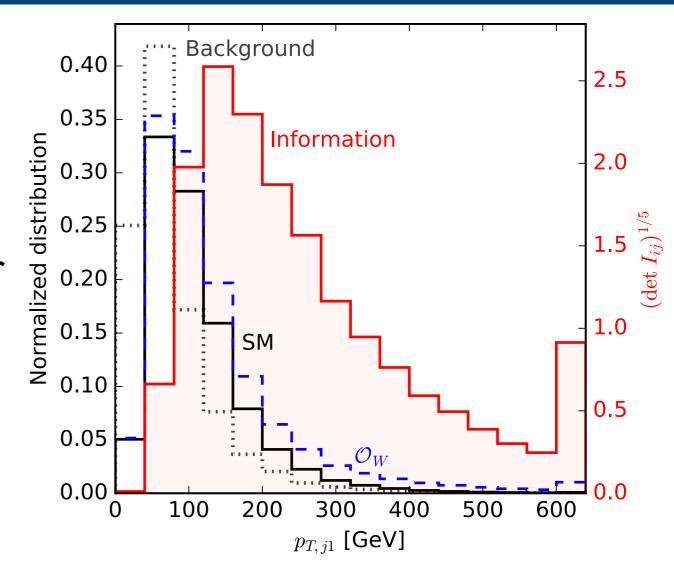
pT of the hardest tagging jet

- virtuality measure:
 Strongly correlated with momentum transfer through production vertex
- increasing amplitude of dim-6 operator



pT of the hardest tagging jet

- virtuality measure:
 Strongly correlated with momentum transfer through production vertex
- increasing amplitude of dim-6 operator
- most information in high pT tail

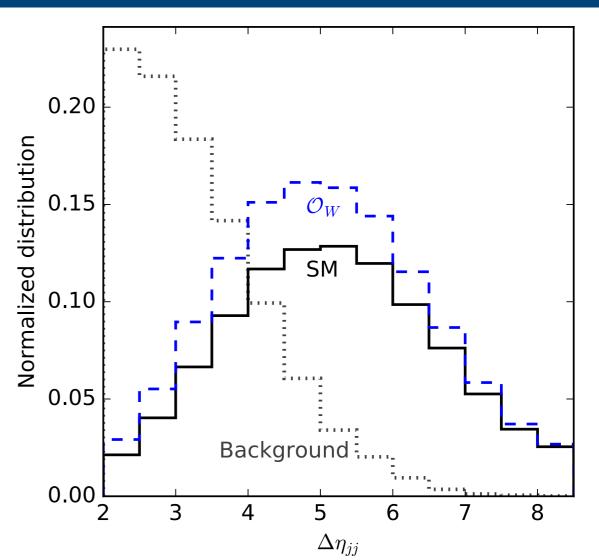


pT of the hardest tagging jet

- virtuality measure:
 Strongly correlated with momentum transfer through production vertex
- increasing amplitude of dim-6 operator
- most information in high pT tail

jet rapidity difference

- better background suppression at large $\Delta\eta_{jj}$
- momentum dependent operators have largest effect at medium $\Delta\eta_{jj}$

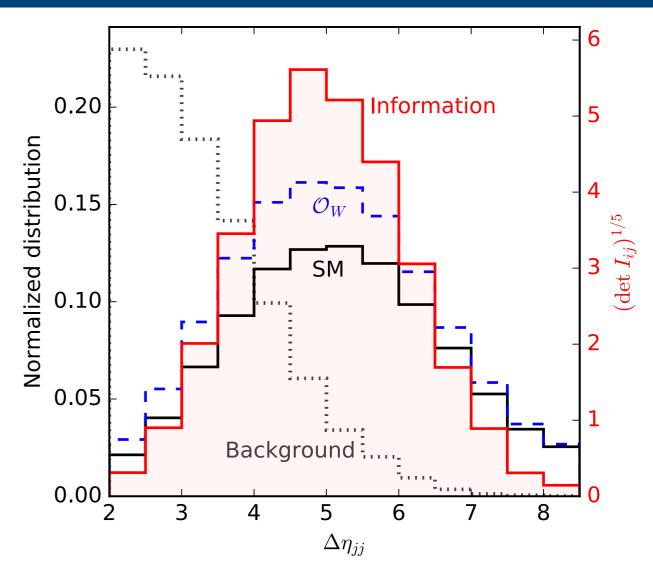


pT of the hardest tagging jet

- virtuality measure:
 Strongly correlated with momentum transfer through production vertex
- increasing amplitude of dim-6 operator
- most information in high pT tail

jet rapidity difference

- better background suppression at large $\Delta\eta_{jj}$
- momentum dependent operators have largest effect at medium $\Delta\eta_{jj}$
- strong WBF cuts ($\Delta \eta_{jj}$ > 4.2) lose information of dim-6 operators

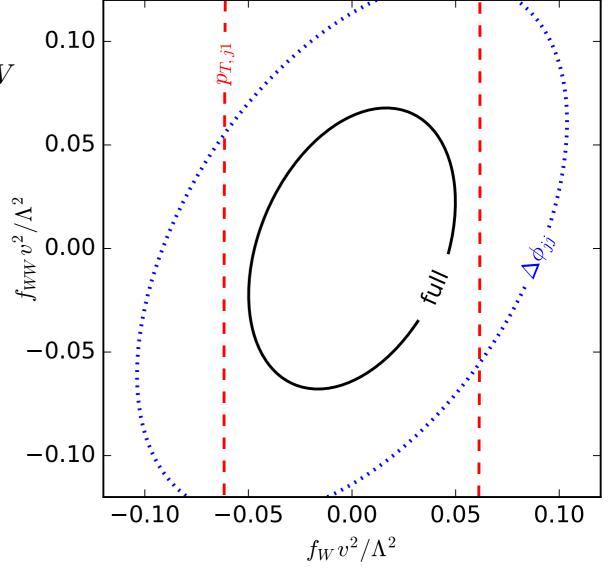


Histograms:

- project high-dimensional phase space onto I or 2-dimensional histogram
- reduced information
- Allows to compare histogram-based and multivariate analyses

Histograms:

- -Virtuality measure $(p_{T,j1})$ probes only \mathcal{O}_W
- Angular correlation between tagging jets $(\Delta \phi_{jj})$ sensitive to \mathcal{O}_{WW}
- Full phase space information

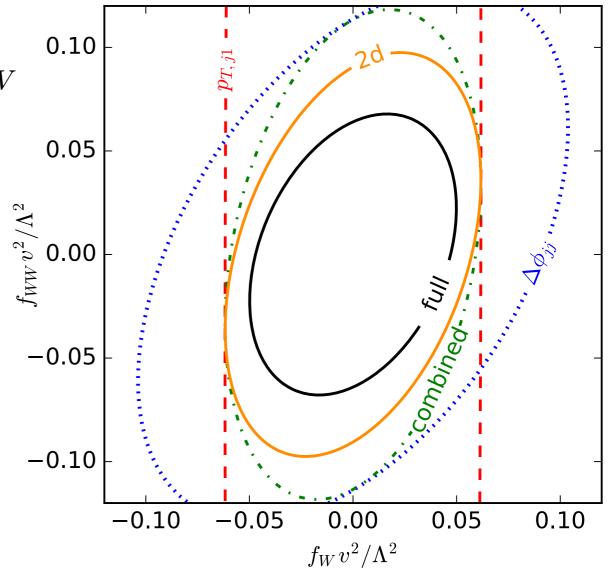


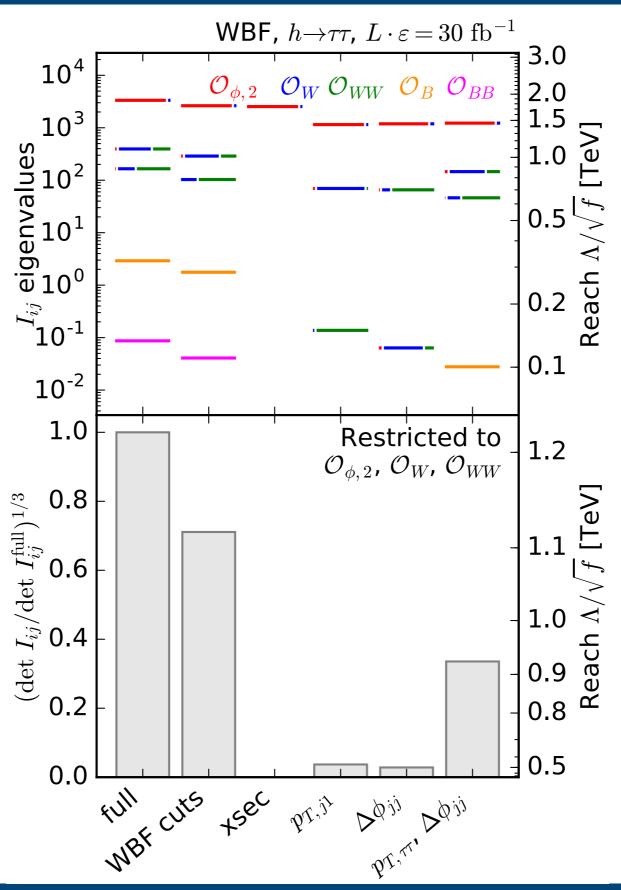
Histograms:

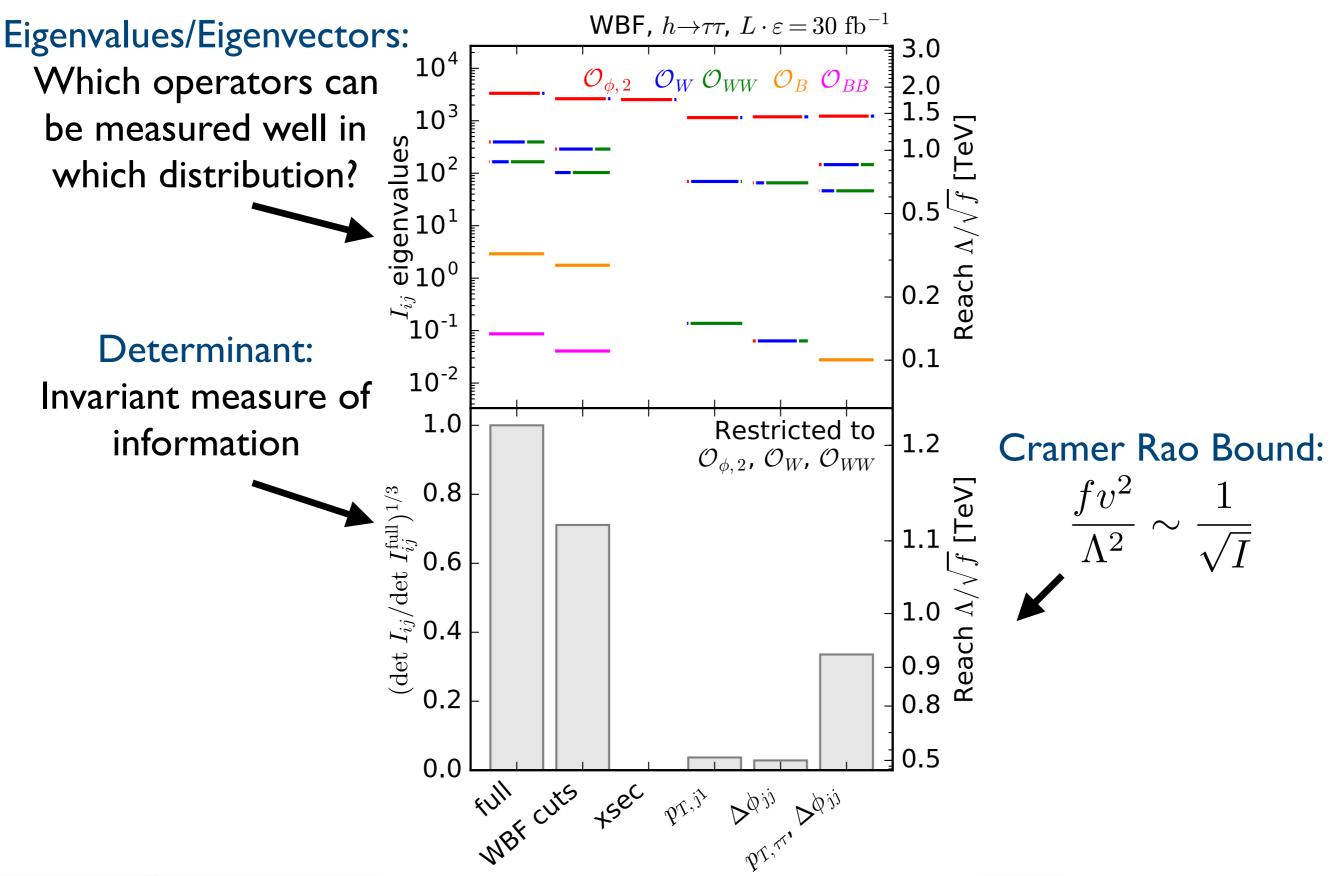
- project high-dimensional phase space onto I or 2-dimensional histogram
- reduced information
- Allows to compare histogram-based and multivariate analyses

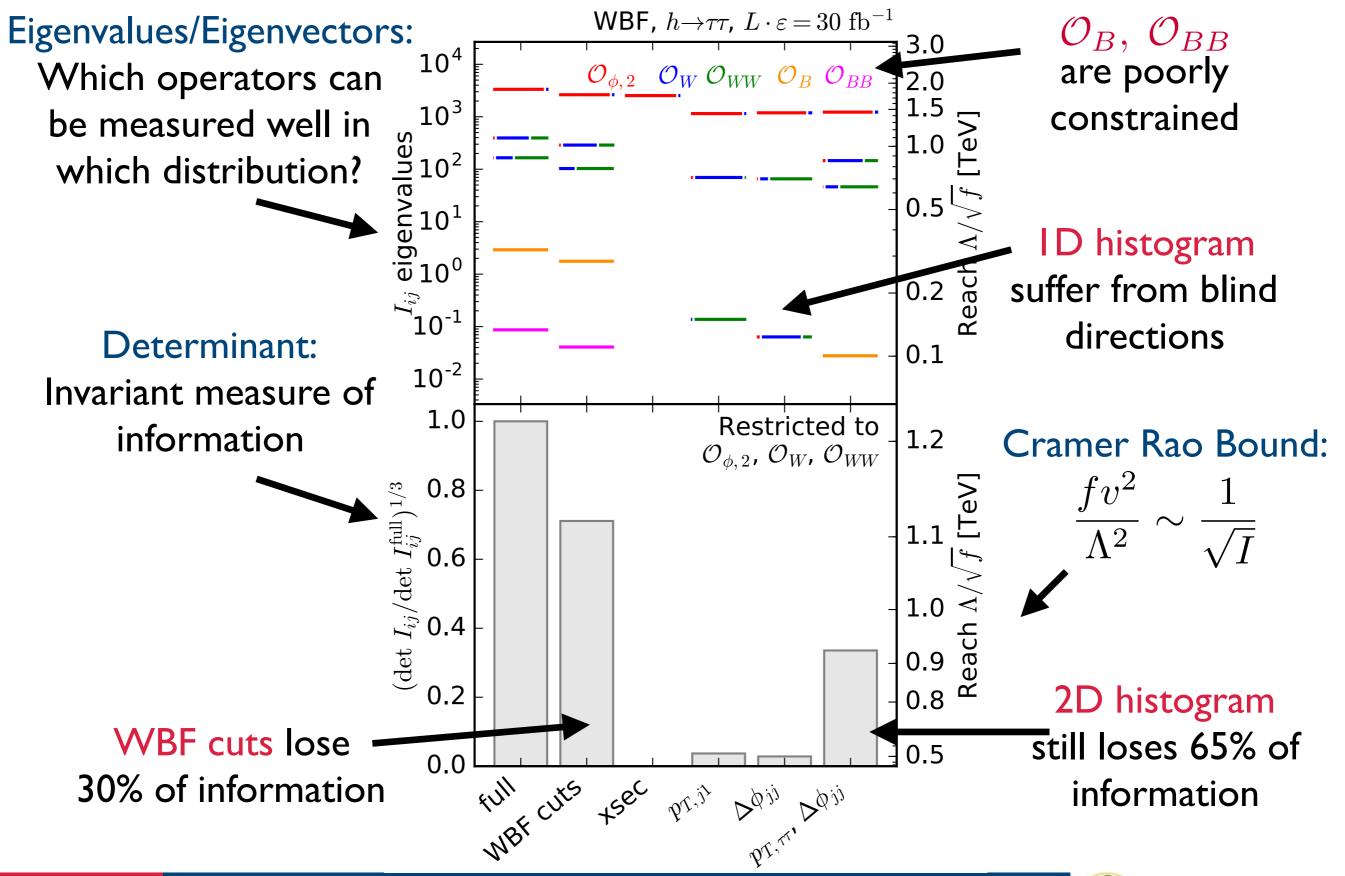
Histograms:

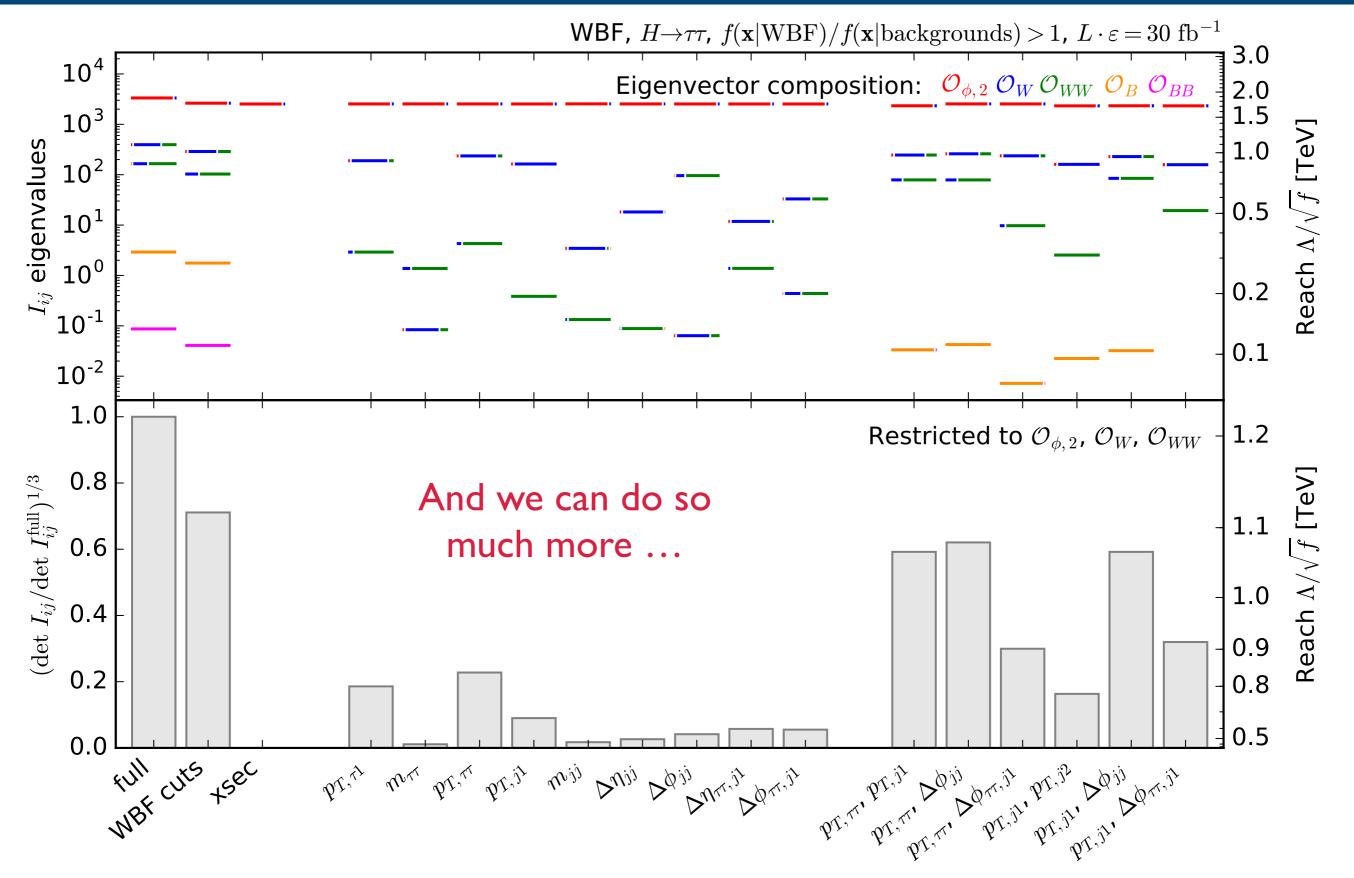
- -Virtuality measure $(p_{T,j1})$ probes only \mathcal{O}_W
- Angular correlation between tagging jets $(\Delta \phi_{jj})$ sensitive to \mathcal{O}_{WW}
- Full phase space information
- 2-dimensional histogram necessary for stringent constraints, but still not close to full information











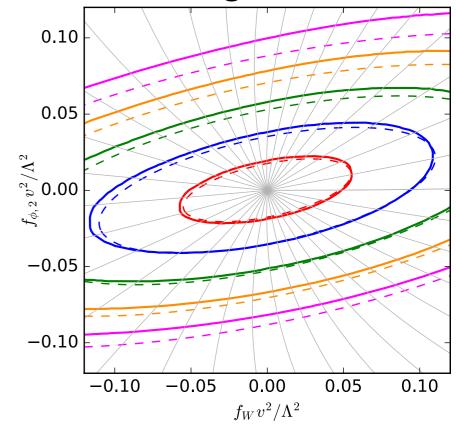
5. Does the EFT series converge?

lacktriangle Distance Measure au unlikeliness to measure heta if $heta_0$ is true in sigmas'

local distance:
$$d^2 = I_{ij}(\theta_0)(\theta^i - \theta_0^i)(\theta^j - \theta_0^j)$$
 (dashed)

global distance:
$$d = \min_{\theta(s)} \int_{s_a}^{s_b} ds \sqrt{I_{ij} \frac{d\theta_i}{ds}} \, \frac{d\theta_j}{ds}$$

Contours of distance d=1,2,3,4,5 from SM



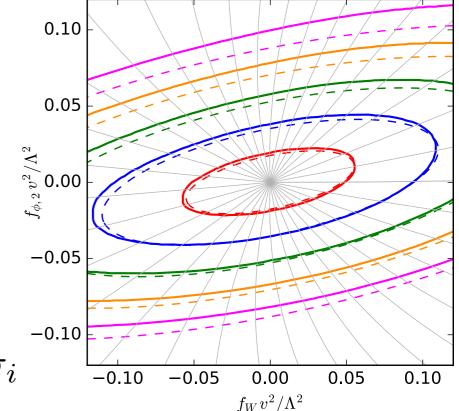
5. Does the EFT series converge?

Distance Measure ~ unlikeliness to measure θ if θ_0 is true in sigmas'

local distance:
$$d^2 = I_{ij}(\theta_0)(\theta^i - \theta_0^i)(\theta^j - \theta_0^j)$$
 (dashed)

global distance:
$$d = \min_{\theta(s)} \int_{s_a}^{s_b} ds \sqrt{I_{ij} \frac{d\theta_i}{ds}} \frac{d\theta_j}{ds}$$

Contours of distance d=1,2,3,4,5 from SM



- $\longrightarrow I_{ij}(\mathbf{0})$ only sensitive to linear effects $\Delta \sigma \sim \theta_i \Delta \sigma_i$
- Information geometry for dim-6 operators $\theta_i = f_i^{d=6} v^2/\Lambda^2$

$$I_{ij}(\mathbf{0})$$
, local distances at SM

$$\Delta \sigma = \Delta \sigma_{SM} + \sum_{i} \frac{f_i^{d=6}}{\Lambda^2} \Delta \sigma_i + \sum_{i} \frac{f_i^{d=6} f_j^{d=6}}{\Lambda^4} \Delta \sigma_{ij} + \sum_{i} \frac{f_k^{d=8}}{\Lambda^2} \Delta \sigma_k + \mathcal{O}(\Lambda^{-6})$$

$$I_{ij}(\theta \neq 0)$$
, global distances

Difference between local/global distance \iff size of $\mathcal{O}(\Lambda^{-4})$ effects

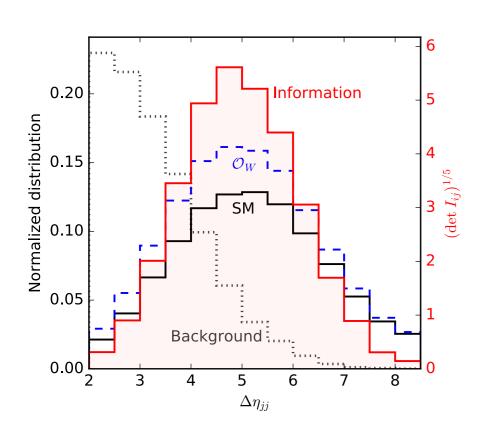
always missing

Conclusion

WBF in the HEFT framework as an example for Information Geometry

We can predict maximum precision at which Wilson coefficients can be measured. I_{i}

 $I_{ij}(\mathbf{0}) = \begin{pmatrix} 3202 & -625 & -7 & -35 & 0 \\ -625 & 451 & -110 & 23 & -2 \\ -7 & -110 & 244 & -6 & 3 \\ -35 & 23 & -6 & 4 & 0 \\ 0 & -2 & 3 & 0 & 0 \end{pmatrix} \begin{matrix} \mathcal{O}_{\phi,2} \\ \mathcal{O}_W \\ \mathcal{O}_{BB} \end{matrix}$



We can obtain differential distribution of information.

We can quantitatively compare performance of histogram-based and multivariate analyses.

