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Standard neutrino cooling




Standard neutrino cooling

v pair annihilation




Standard neutrino cooling

photo production
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Standard neutrino cooling
*>< pair annihilatio_n plasmon decay 7 W@é
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Standard neutrino cooling
*>< pair annihilatio_n plasmon decay

photo production
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bremsstrahlung
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Example: Massive stars

Table 1 Evolution of a 15-solar-mass star.

Stage Timescale  Fuel or Ash or Temperature Density Luminosity Neutrino
product product (10° K) (gmecm=3)  (solar units) losses
(solar units)

Hydrogen 11 Myr H He 0.035 2.8 28,000 1,800

Helium 2.0 Myr He G0 0.18 1,390 44,000 1,900
Carbon 2000 yr C Ne, Mg 0.81 2.8x10° 72,000 3.7x10°
Neon 0.7yr Ne 0, Mg 1.6 1.2x 107 75,000 1.4x 108
Oxygen 2.6 yr 0, Mg Si, S, Ar, Ca 1.9 8.8x 108 75,000 9.1 x 108
Silicon 18d Si, S, Ar, Ca Fe, Ni, Cr, Ti, ... 3.3 4.8 x 10’ 75,000 1.3x 10"
lroncore  ~1s Fe,Ni, Cr, Ti, ... Neutron star >7.1 >7.3x10° 75,000 >3.6x 10"
collapse*

* The pre-supernova star is defined by the time at which the contraction speed anywhere in the iron core reaches 1,000 km s,

Woosley,
Janka,
Nature Physics
V.1, p. 147 (2005)

©

Log central T (K)

Log central density (g cm™)
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Example: Massive stars

Table 1 Evolutignafadiesolar-mass star.
Stage j' Timescale % Fuel or Ash or Temperature Density Luminosity Neutrino

£ product product (10° K) (gmecm=3)  (solar units) losses
p - (solar units)

Hydrogen & 11Myr & H He 0.035 5.8 28,000 1,800

Helum & 20Myr % He GO0 0.18 1,390 44,000 1,900
Carbon § 2000yr % C Ne, Mg 0.81 2.8x10° 72,000 3.7x10°
Neon § 07yr 2 Ne 0, Mg 1.6 1.2x107 75,000 1.4 x 108
Oxygen § 26yr 2 0, Mg Si, S, Ar, Ca 1.9 8.8x 108 75,000 9.1 x 108
Silicon § 18d £ Si, S Ar, Ca Fe, Ni, Cr, Ti, ... 3.3 4.8x10" 75,000 1.3x 10"
Ironcore § ~1s § Fe,Ni,Cr, Ti,...  Neutron star >7.1 >7.3x10° 75,000 >3.6 x 10"
collapse* %

* The pre-supernova star is defined by the time at which the contraction speed anywhere in the iron core reaches 1,000 km s,

Woosley,
Janka,
Nature Physics
V.1, p. 147 (2005)

©

Log central T (K)

Log central density (g cm™)
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Stars are extremely
hermetic detectors

@ The branching ratio for e*e™ -> neutrino pair is
o ~ 107'® for ~ 1 MeV energies
@ Dominant mode is efe” -> 7 7

@ Plasmon decay 7 -> neutrino pair probability
between collisions is ~ 1072°

@ Yet, neutrino energy losses are crucial for
stellar evolution
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v magnetic
Axion-photon moment
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v magnetic

Axion-photon moen’r

Larger losses require
more burning (shorter HB
stage) or else greater
core size before He flash

....
___
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v magnetic
Axion-photon moment

Larger losses require
more burning (shorter HB
stage) or else greater
core size before He flash

&

Stars as Laboratories

o

for Fundamental Physics

A0, A great reference is a book
by Georg Raffelt

BN ALY (AR e A ‘

Georg G. Raffell
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In stellar cooling, axions
are also neutrinos!




Primakoff process

@ In stars, photons would
convert into axions in the
background fields of nuclei

PRIMAKOF

& Soft process, regulated by T

plasma screening (Raffelt
1986)
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CAST axion telescope

@ LHC dipole magnet, mounted to point at the Sun
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Helium burning

102 10° 10* 10° 10° 107 10% 10° 10'

pc [g/em’]
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UPERGIANTS

Luminosity (compared to the sun)

AB Doradus C~

T R
30 000 10 000 6 000 3 000 R
Surface Temperature (in degrees) AL e
P — o e e
http //phvsrcs aps org/arﬁbl%g Iarge rm%/ﬂ/jo 11Q§/PhVé“ésﬁ+14 .
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http://chandra.harvard.edu/resources/illustrations/stellar_fate2.html
http://chandra.harvard.edu/resources/illustrations/stellar_fate2.html

Surface temperature,
with axion cooling

@ Axion cooling
accelerates He
burning in the
center, so that
the time for
the blue loop
never comes
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No need to count stars!

4.2 4. : : ! . : : 4.2 4.
Lo g(Teff [K]) Log(Teff [K] )

@ No Cepheid variables in a range of periods

@ Details in AF, Giannotti, Wise PRL (2013)
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Short-baseline,
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Planck and lceCube
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Sterile neutrinos at oscillation experiments

VOLUME 77, NUMBER 15 PHYSICAL REVIEW LETTERS 7 OCTOBER 1996

Evidence for 7, — 7, Oscillations from the LSND Experiment
at the Los Alamos Meson Physics Facility

C. Athanassopoulos,'?> L.B. Auerbach,'? R.L. Burman,” I. Cohen,® D.O. Caldwell,’ B.D. Dieterle,'” J. B. Donahue,’
A.M. Eisner,* A. Fazely,!! F.J. Federspiel,” G.T. Garvey,” M. Gray,> R.M. Gunasingha,® R. Imlay,?® K. Johnston,’
H.J.Kim,® W.C. Louis,’ R. Majkic,12 J. Margulies,12 K. McIlhany,l W. Metcalf,? G.B. Mills,” R. A. Reeder,!°
V. Sandberg,7 D. Smith,’ 1. Stancu,! W. Strossman,! R. Tayloe,7 G.J. VanDalen,! W. Vernon,>* N. Wadia? J. Waltz,
Y-X. Wang,* D.H. White,” D. Works,'? Y. Xiao,'? S. Yellin®
LSND Collaboration

| 3 SNSRI SN KV NSV » EINUNIILES DU BN LY SN oo ¥ ~o N |

(Received 9 May 1996)

A search for 7,, — 7, oscillations has been conducted at the Los Alamos Meson Physics Facility by
using 7, from u™ decay at rest. The 7, are detected via the reaction 7, p — e n, correlated with a
y from np — dy (2.2MeV). The use of tight cuts to identify e™ events with correlated y rays yields
22 events with e™ energy between 36 and 60 MeV and only 4.6 = 0.6 background events. A fit to
the e events between 20 and 60 MeV yields a total excess of 51.038% + 8.0 events. If attributed

to 7, — 7, oscillations, this corresponds to an oscillation probability of (0.31 = 0.12 % 0.05)%.
[S0031-9007(96)01375-01
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Short-baseline oscillations?

¢ HintSforAm2~1—3 eV2 2 Ll I N A R N | N A AT
102 — " :
R ' [ Lsnpoo%cL
18% 3 ! LSND 99 % CL
§ . -
- Accumulated by a number of 1 £ 4 gl waseee
. . . =] = ~ . I ~~"~ — 0

experiments: LSND, MiniBOONE, L. ] S~ - 0}99 aes

1 & - B O ‘? L
reactor data c 1&= "~
= {1 K[l ! % @ =

¥ 1 s
- While a number of other E 3 N

oscillation searches have

obtained valuable constraints 10-"
(ICARUS, IceCube, etc), no

conclusive resolution after two

decades 1072

5

| I'|_|_|III|

- See, e.g., C. Giunti, arXiv:
1609.04688 for review
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Sterile neutrinos: cosmological problems?

* Recent results from Planck measure relativistic energy density in the
universe at matter/rad equality -> CMB decoupling

« Planck 2015 [arXiv:1502.01589] reports Ne#=3.15+0.23 and for the
mass my < 0.23 eV

e Are sterile neutrinos that the SBN program plans to search for
already ruled out by cosmology?
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Window into new physics?

If the new neutrinos are truly sterile, they will fully thermalize with the SM

However, if they have interactions of their own, these interactions could
induce a MSW potential that would suppress mixing in the early universe

- Babu & Rothstein, Phys.Lett. (1992) + many since
BUT thermalization cannot be delayed below T, ~ (sin? 20(Am?)2M,;)1/5 ~ 200 keV
close to weak freezeout (1 MeV) -> fractional N_eff will be produced

 Cherry, A. F., Shoemaker, arXiv:1605.06506

This may help to fit the data better. (Local measurements of the Hubble
constant are higher than what is preferred by Planck in standard cosmology

4.2
0.855

1 advse | Will be conclusively tested by
5. | jesos CMB-Stage4 experiment

30F L SRR : 0.780

| o see talk by Joel Meyers

270

Wednesday, May 10, 17

18



Window into new physics?

- Also, hidden interactions will
make neutrino mass eigenstates
scatter on each other

1oo HIGh energy v spectra, lightest m, =0.1 meV.

« The universe is filled with relic
neutrinos. May no longer be
transparent to neutrinos of ultra

7
T
. . ) 3 2
high energies 5 |
% 107 |
)
"e‘h

| =—— g, =2.0, sind, :8x1;)‘5
* Recently, IceCube has observed

| —— g, =9x107% , sind, =8 x10?

such neutrinos! Next generation T 107 — 6, =3x10"" s, =01

. . (| == GRB + C
upgrade in the works. It will have | T cecube Atm Bkg |
10 times statistics, tell us if there T T T T A Vo

E, (GeV)

are indeed absorption features in
the spectrum (presently, there
are hints)
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Detall in arXiv:1605.065006

= = =
o o o
[e)} ~ oo

Mediator Mass, M (V)

10*

Gauge Coupling, g,
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Light mediators: excluded by free-streaming

* For sufficiently large coupling,
neutrinos, even the ones

predominantly active, scatter
even at the CMB epoch

1.2

1.0

* In conflict with PLANCK 0.8

—

ot
=
=

:_;,:‘ 0.6

Jeff < (Tree/Mpr) t/4 (me/Trec)

0.4

0.2

Friedland, Zurek, Bashinsky,
0704.3271 0.0

gefr < 10_7(m¢/1 eV)

Here, geff IS effective coupling, g Sin@1

Wednesday, May 10, 17



Supernova neutrinos




What is our beam for
this measurement?

@ A massive star that runs out of fuel
to support itself against gravity

@ The core can be supported by the
electron degeneracy pressure only
while electrons are non-relativistic

d My~ (MPI/MN)2 Mp| ~ Jig: Moal!
Chandrasekhar mass. (We live in
an amazing universe!)

@ The Fe core collapses in free fall, at v
~c/4, until reaching (supra)nuclear

densities, 10° g/cm?® — 10 g/cm?3
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Gravity-powered neutrino bomb

@ The gravitational binding energy GnM2/R =~ 3*10°° ergs
(~10% of rest mass!) and trapped lepton number are
carried out by diffusing neutrinos. The weak interactions

mean free path: \~(Gr? E2 n)* ~ a few cm
@ t ~ R%/ch ~ 102 cm?/(3 cm 3*10%m/s) ~ 10 s

@ For comparison, solar luminosity is 3.8%10%3 ergs/s. A core-
collapse supernova in neutrinos instantaneously outshines

the visible universe.

@ The visible explosion is <1% of energy.
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SN V: the most complicated
known oscillation problem
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Neutrino self-refraction

® |0% of the rest mass of the collapsed core (~
1.4 M@) is emitted in 10°® neutrinos in a

burst lasting Ot ~ seconds

e At~ |00 km, the number density of
G SLECAMINE NEULLINORIS
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Neutrino “‘self-refraction’

Fuller et al, 1988;

. Pantaleone 1992;
® Above the neutrino-sphere, Duan, Fuller, Qian, Carlson, 2006;

streaming neutrinos are so + hundreds more
dense that their flavor
evolutions become coupled

® A given neutrino scatters on
an ensemble of the
“background” neutrinos

® One has to evolve an
ensemble of neutrinos as a
whole

"Background" L
Vyz = COS Qe + SIN QuV/y,

® Rich many-body physics, with
many regimes

Figure from
Friedland & Lunardini,

Phys. Rev. D 68, 013007 (2003)

Wednesday, May 10, 17



® Known physics: Z-mediated coherent

o b . ) - 7 v T L . ) N o )
sqd L Al -J.ﬂ a \ \ - | "g R \ alil] oy o e - S SN ad
- y T v e P A s, e ¥ B < g % - = =
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Multiangle, multienergy
problem

Figure from Qian & Fuller, astro-ph/9406073

® Typical calculations: 10° energy bins and 0% angle bins
® Rapid oscillations in all bins
® Computer intensive

® Moore’s Law caught up with this problem in 2005
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Neutrino Antineutrino
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* See LBNE science document, 1307.7335
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Conclusions

@ Neutrinos are one of the key players in the Universe

@ Astrophysical environments offer amazing laboratories
for probing neutrinos and light hypothetical particles

@ In supernova, in particular, we expect collective flavor
oscillations, a phenomenon not reproducible on Earth

@ If a'sterile” neutrino is confirmed in the lab, a
combination of future IceCube and CMB-S4 data may
open portal into the Dark Sector

@ Stay tuned!
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