In SUSY-like models with dark matter candidates, LHC events contain two decay chains, each terminating in an invisible particle, whose true energy and momentum are not measured in the detector. I will review and contrast some recently proposed invariant mass variables which are suitable for such event topologies. Each variable relies on a specific ansatz for the unmeasured individual 4-momenta...

We critically examine the classic endpoint method for particle mass determination, focusing on di?fficult corners of parameter space, where some of the measurements are not independent, while others are adversely a?ected by the experimental resolution.In such scenarios, mass di?erences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of...

We investigate the solvability of the event kinematics in missing energy events at hadron colliders, as a function of the particle mass ansatz. To be specific, we reconstruct the neutrino momenta in dilepton $t\bar{t}$-events, without assuming prior knowledge of the top, W and neutrino masses. We identify a class of events, which we call *extreme events*, with the property that the boundary of...

Tools from information geometry can be used to understand and optimize LHC measurements. Our approach is based on the Fisher information, which encodes the maximum precision with which theory parameters can be measured in a given experiment. We show how the Fisher information in LHC processes can be calculated, and demonstrate how information geometry lets us improve event selections,...

As discussed in the previous talk, tools from information geometry can be used to understand and optimize LHC measurements. As an example, we calculate the maximum sensitivity of Higgs measurements to the dimension-6 operators of a Higgs effective field theory. The Fisher Information then encodes the maximum precision with which the theory parameters - in this case the Wilson coefficients -...

We introduce a new scale-invariant jet clustering algorithm which does not impose a fixed cone size on the event. The proposed construction maintains excellent object discrimination for very collimated partonic systems. Nevertheless, it is able to asymptotically recover favorable behaviors of the standard anti-KT algorithm. Additionally, it is intrinsically suitable for the tagging of...

The Global and Modular Beyond-the-Standard Model Inference Tool (GAMBIT)

is an open-source tool for performing global fits in generic Beyond the Standard Model theories. GAMBIT is the amalgamation of frontline scanner algorithms, advanced calculations of physical observables and likelihoods, and a flexible and powerful interface with the user and external codes. Due to the deep modularity of...

Renormalization Group Equations for an arbitrary gauge field theory have been known at two-loop for about 30 years. Deriving them by hand for a specific model is a very tedious task prone to errors. In order to automate this process, we released in 2014 a Python program called PyR@TE that automatically derived the RGEs for a given Lagrangian (non-SUSY).

Recently, we published the second...