# DARK MATTER AND CONTINUOUS FLAVOR SYMMETRIES

JURE ZUPAN U. OF CINCINNATI

> based on Kamenik, JZ, 1107.0623 Bishara, JZ, 1408.3852 Bishara, Greljo,Kamenik, Stamou, JZ, 1505.03862

Invisibles 15 Workshop: "Invisibles Meets Visibles", Jun 24 2015

## THE AIM/MOTIVATION

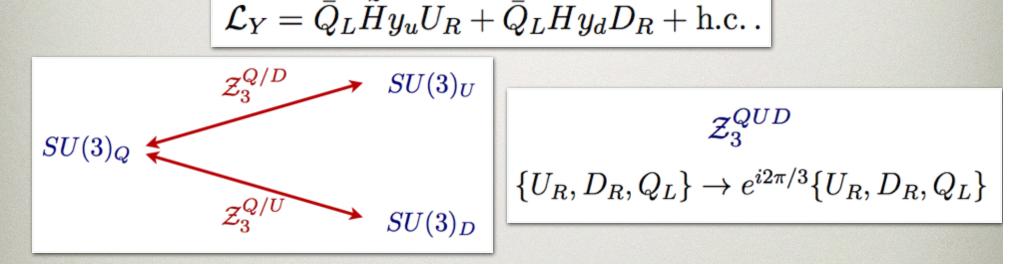
- SM has a very nontrivial flavor structure
  - hierarchical fermion masses
  - small flavor violation in quark sector, large in lepton sector
- can this have implications for dark matter searches?

## OUTLINE

- three examples
- all based on continuous flavor symmetries in the quark sector
  - dark matter stability
    - gauged flavor model+DM
    - metastable asymmetric DM
  - flavor breaking and DM searches
    - mono-tops at the LHC

DM STABILITY & CONTINUOUS SYMMETRIES

## SM FLAVOR GROUP


- the breaking of flavor group may leave an exact discrete group exact
  - this is true in the SM
- if zero Yukawas large flavor group:  $U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$
- we consider quark subgroup, SU(3) factors  $G_F=SU(3)_Q \times SU(3)_U \times SU(3)_D$

$$Q_L \sim (3, 1, 1)$$
  $U_R^c \sim (1, \bar{3}, 1)$   $D_R^c \sim (1, 1, \bar{3}, 1)$ 

Batell, Pradler, Spannowsky, 1105.1781 Batell, Lin, Wang,1309.4462 Bishara, Greljo,Kamenik, Stamou, JZ, 1505.03862

## SM FLAVOR BREAKING

• the SM Yukawas break  $G_F \rightarrow Z_3^{QUD}$ 

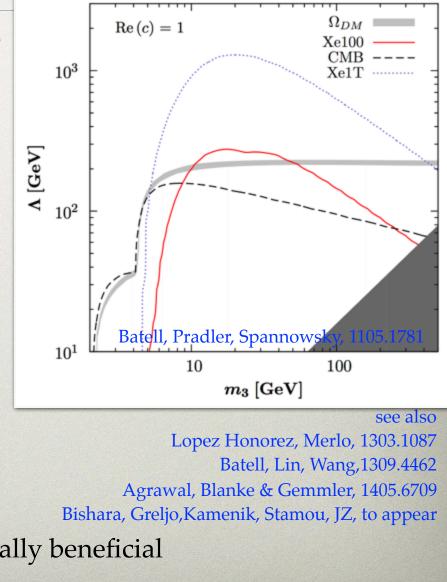


- $Z_3^{QUD}$  is an accidental symmetry of the SM
  - preserved in presence of any MFV NP
  - in the SM is a subgroup of  $U(1)_B$  (not in general NP)

## DARK MATTER STABILITY

- all SM fields: neutral under diag. subgroup  $Z_3^{\chi} \subset Z_3^{QUD} \times Z_3^{c}$
- color neutral dark matter charged under  $Z_3^{\chi}$  is automatically stable

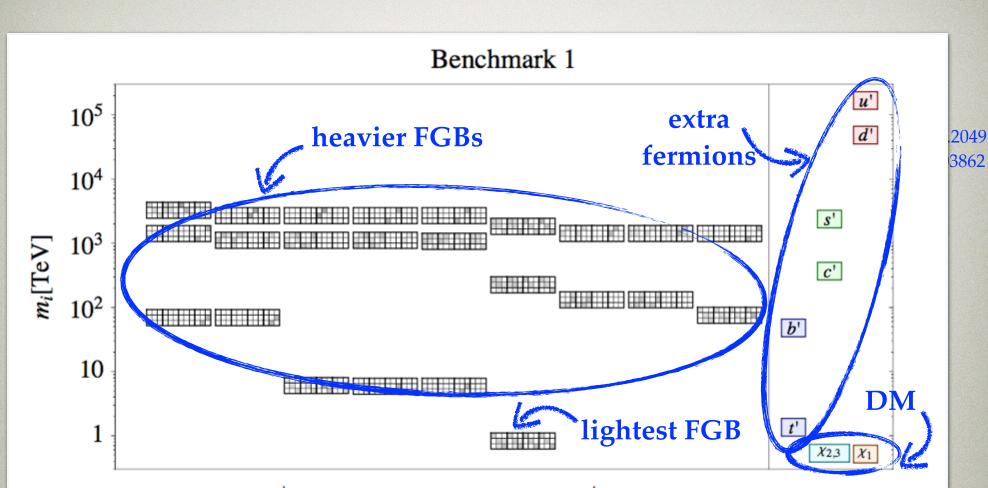
• suitable  $G_F$  representations have nonzero flavor triality  $\chi \sim (n_Q, m_Q)_Q \times (n_u, m_u)_{u_R} \times (n_d, m_d)_{d_R}$   $(n-m) \mod 3 \neq 0.$   $m \equiv m_Q + m_u + m_d.$  $n \equiv n_Q + n_u + n_d$ 


- in contrast the flavor breaking vevs should have zero flavor triality:  $(n_{vev} m_{vev}) \mod 3 = 0$  so that  $Z_3^{\chi}$  unbroken
  - an example: SM Yukawas which are in bi-fundamental

# MFV DM

- an example is DM with MFV interactions
  - EFT analysis
  - structure of DM-SM interactions in MFV DM dictated by MFV power counting
  - example: SM singlet  $S \sim (3, 1, 1)_{GF}$
  - for inverted spectrum annihilation dominated by χ<sub>3</sub>χ<sub>3</sub>→bb̄
- does it have to be MFV?
- dynamical origin of interactions?
- will show a non-MFV example
  - not being in EFT limit will be numerically beneficial

8

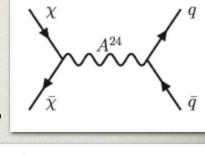

J. Zupan Dark Matter and Continuous Flavor...

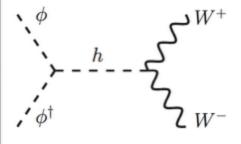


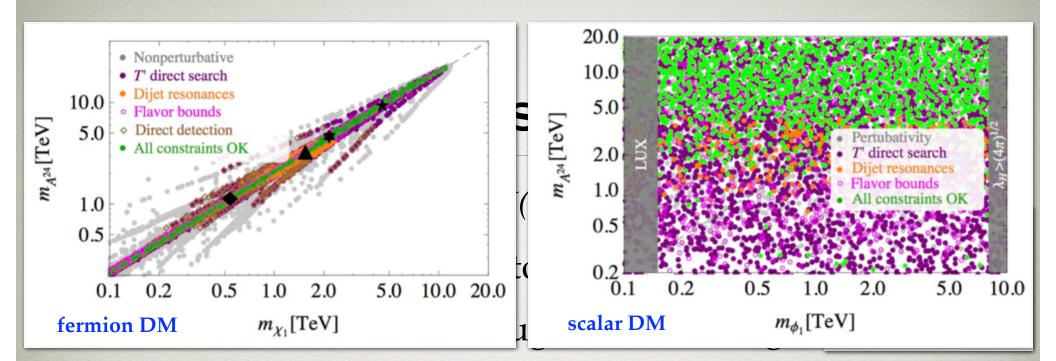
## GENERAL FLAVORED DM

Grinstein, Redi, Villadoro, 1009.2049 Bishara, Greljo,Kamenik, Stamou, JZ, 1505.03862

- an important requirement is that *G<sub>F</sub>* is a good symmetry in the UV
- easiest to achieve by gauging  $G_F = SU(3)_Q \times SU(3)_U \times SU(3)_D$ 
  - for thermal relic DM want flavored gauge bosons ~TeV
  - FCNC constraints are nontrivial in this case
- possible to avoid FCNCs with inverted hierarchy
  - extra fermions to cancel anomaly
  - flavor violating flavored gauge bosons (FGBs) heavier if coupling to lighter quarks





 $M_u = 980.\text{GeV}, \lambda_u = 1., \lambda'_u = 11.8, M_d = 700.\text{GeV}, \lambda_d = 0.82, \lambda'_d = 3.8, g_Q = 0.126, g_U = 0.41, g_D = 0.237$ 


• flavor violating flavored gauge bosons (FGBs) heavier if coupling to lighter quarks

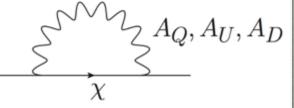
## THE INCLUSION OF DM

- take DM triplet of  $SU(3)_U$ , so  $Z_3^{\chi}$  odd
  - fermionic DM (vectorlike fermions)
    - thermalizes through FGB exchanges
  - scalar DM
    - thermalizes through Higgs portal
- note: flavons are taken to be heavy
  - in principle also possible that they are the dominant mediators, e.g. in U(1) horizontal models
     Calibbi, Crivellin, Zaldivar, 1501.07268

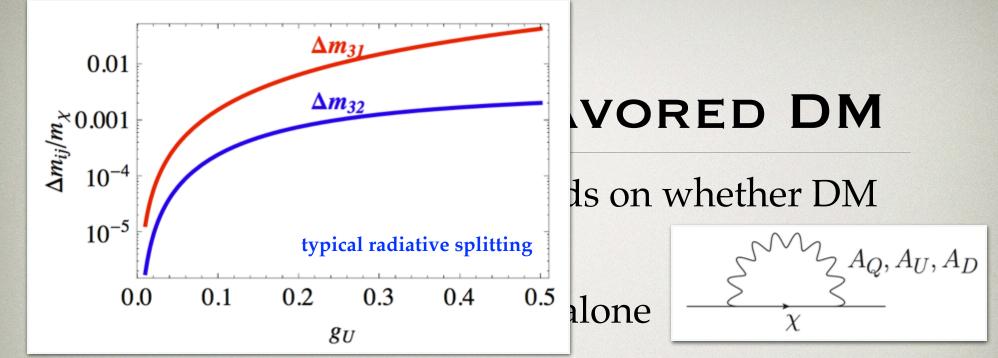




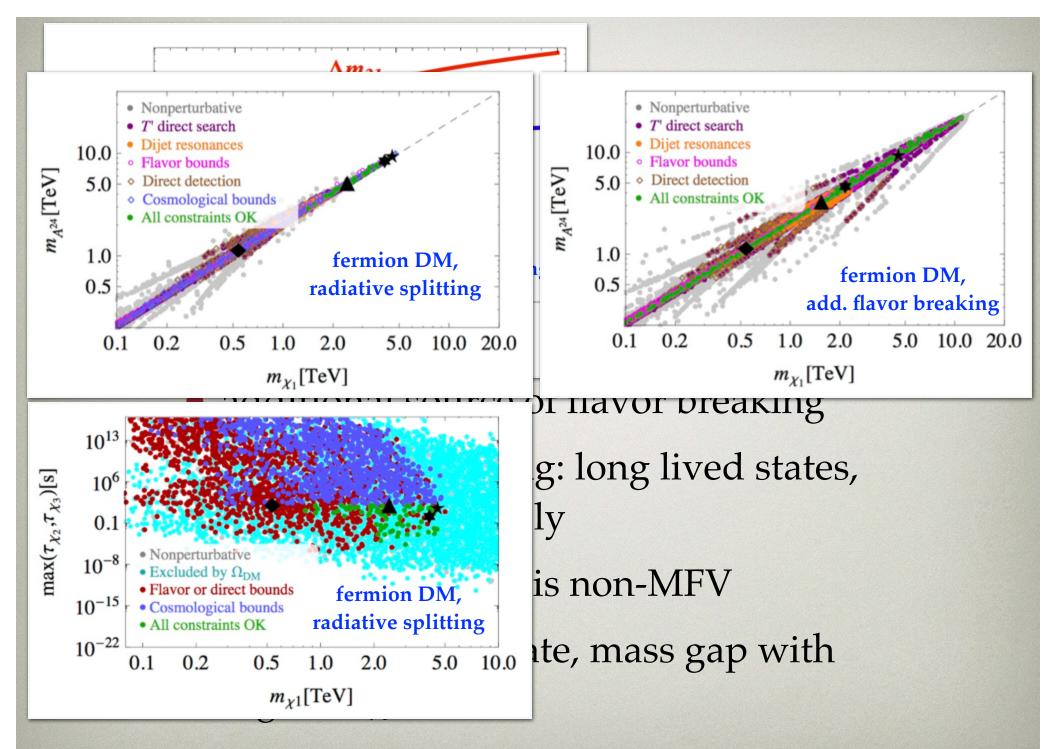


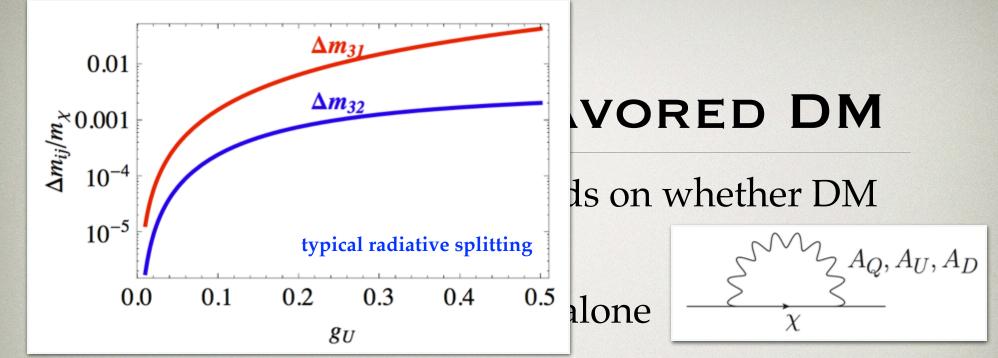

- scalar DM
  - thermalizes through Higgs portal
- note: flavons are taken to be heavy
  - in principle also possible that they are the dominant mediators, e.g. in U(1) horizontal models

Calibbi, Crivellin, Zaldivar, 1501.07268


W

## FERMIONIC FLAVORED DM


- phenomenology depends on whether DM mass splitting due to
  - radiative corrections alone

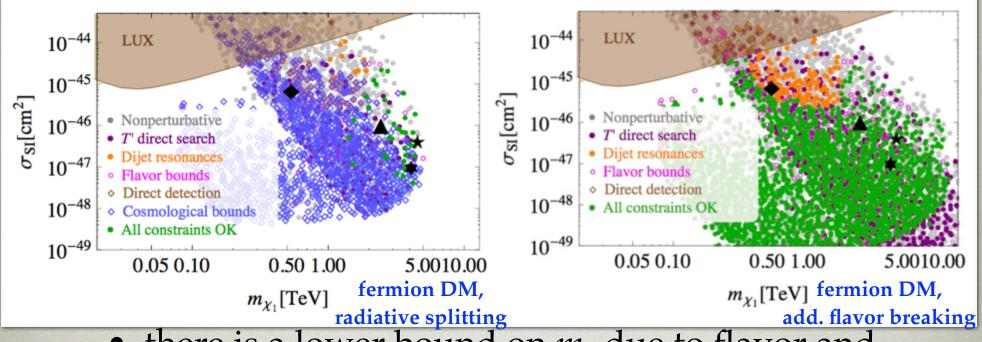



- additional source of flavor breaking
- for radiative splitting: long lived states, BBN constraints apply
- an aside: this model is non-MFV
  - χ<sub>2</sub> and χ<sub>3</sub> degenerate, mass gap with (lighter) χ<sub>1</sub>



- additional source of flavor breaking
- for radiative splitting: long lived states, BBN constraints apply
- an aside: this model is non-MFV
  - χ<sub>2</sub> and χ<sub>3</sub> degenerate, mass gap with (lighter) χ<sub>1</sub>





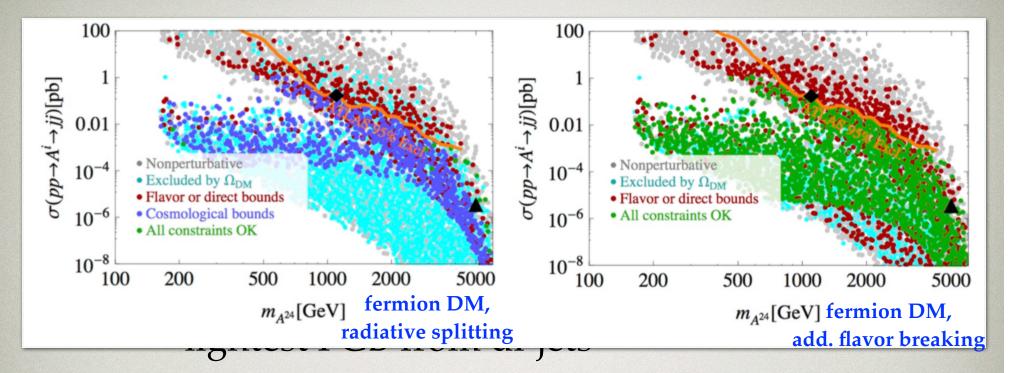

- additional source of flavor breaking
- for radiative splitting: long lived states, BBN constraints apply
- an aside: this model is non-MFV
  - χ<sub>2</sub> and χ<sub>3</sub> degenerate, mass gap with (lighter) χ<sub>1</sub>

# RELIC ABUNDANCE AND DIRECT SEARCHES

- only the lightest gauge boson relevant for the DM interactions
  - approximately *T*<sup>8</sup> diagonal in *SU*(3)<sup>*i*</sup>
  - DM annihilates to *t't'*, *tt*, *jj*
- viable set of benchmarks seem to require  $m_{\chi} \sim m_A/2$
- there is a lower bound on  $m_{\chi}$  due to flavor and collider constraints on flavored gauge bosons
- direct detection mostly below the bounds

# **RELIC ABUNDANCE AND** DIRECT SEARCHES




• there is a lower bound on  $m_{\chi}$  due to flavor and collider constraints on flavored gauge bosons

12

direct detection mostly below the bounds

## **OTHER SEARCHES**

- at colliders can search for extra states of the model
  - lightest FGB from di-jets
  - searches for exotic quarks from  $t' \rightarrow CMS, 1311.7667$ bW,tZ,th
- can search for deviations in FCNCs
  - meson mixing from lightest FCB exchange
  - $b \rightarrow s\gamma$  from loops with exotic quarks



- searches for exotic quarks from  $t' \rightarrow CMS, 1311.7667$ bW,tZ,th
- can search for deviations in FCNCs
  - meson mixing from lightest FCB exchange
  - $b \rightarrow s\gamma$  from loops with exotic quarks

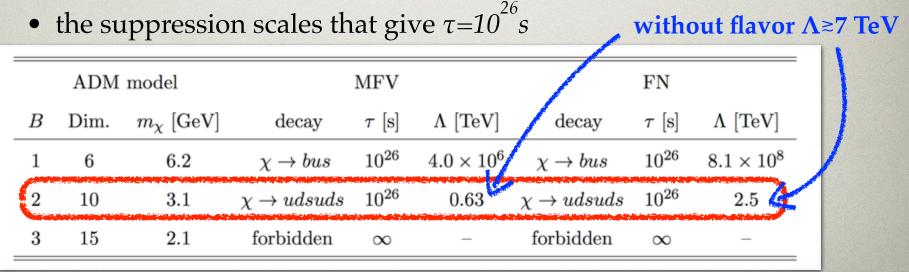
# RECAPITULATING DM FROM FLAVOR TRIALITY

- the flavor symmetry of the quark sector can be the origin of DM stability
  - DM needs to be part of a flavor multiplet
- one can search for extra states at colliders and through FCNCs

# ASYMMETRIC DM & FLAVOR

## ASYMMETRIC DM

- asymmetric DM addresses the coincidence problem
  - $\Omega_{DM} \sim 5 \ \Omega_{baryon}$  Nussinov 1985; Barr 1991; Kaplan 1992; Kaplan, Luty, Zurek, 0901.4117; +many refs.
    - is there a link between the two abundances?
- could be explained if  $m_{DM} \sim 5 m_{proton}$ 
  - exact relation depends on thermal history and *B*-*L* charge of  $\chi$ 
    - for  $\chi$  Dirac fermion, no other states below EW scale Bishara, JZ, 1408.3852


 $m_{\chi} = \{6.2, 3.1, 2.1\} \text{GeV}, \quad \text{for} \quad (B-L)_{\chi} = \{1, 2, 3\},\$ 

• requires asymmetric interactions that freeze out above EW phase transition

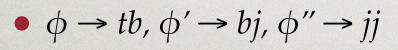
## ASYMMETRIC OPERATORS

Bishara, JZ, 1408.3852

- such asymmetric operators could be linear in  $\chi$ 
  - for instance for *B*=2 DM, schematically
  - also lead to DM decay
- is it possible *O*<sub>asymm</sub> is suppressed enough that DM metastable?
  - i.e. we have accidental Z<sub>2</sub>?
  - the required scale depends on the origin of flavor



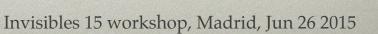
J. Zupan Dark Matter and Continuous Flavor...


17

 $\mathcal{O}_{\text{asymm.}} \sim \frac{C}{\Lambda 6} \chi(qq)^3,$ 

fixed by flavor symmetries

## SEARCHES


- colored mediators inevitable
  - can be searched for at the LHC through pair prod. or single product.



• the lowering of scale using flavor model crucial that they can be in LHC reach

18

• also searches through low energy FCNCs





# FLAVOR VIOLATION & DM SEARCHES

#### THE AIM

Kamenik, JZ, 1107.0623

- most of the time flavor breaking irrelevant in DM searches
  - is there an instant where it is important?

## FV AND DM

- FV couplings can be important
  - when DM couplings to quarks are chirality flipping
  - since then couplings to two different EW representations
    - typically in two different flavor representations as well
- numerically, the FV couplings can dominate in mono tops

## DIRECT PRODUCTION

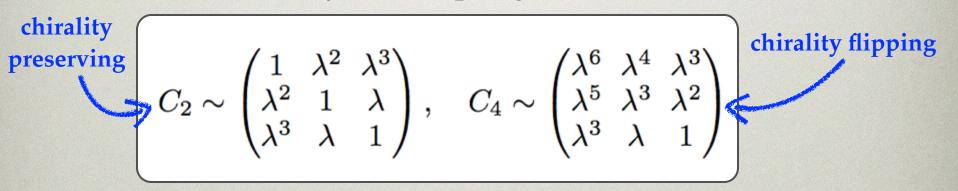
• use EFT for DM interactions with quarks

$$egin{aligned} \mathcal{L}_{ ext{int}} = \sum_{a} rac{C_a}{\Lambda^{n_a}} \mathcal{O}_a \end{aligned}$$

- only interested in interactions with quarks
  - $\begin{aligned} \mathcal{O}_{1a}^{ij} = & \left(\bar{Q}_{L}^{i}\gamma_{\mu}Q_{L}^{j}\right)\mathcal{J}_{a}^{\mu}, & \mathcal{J}_{V,A}^{\mu} = \bar{\chi}\gamma^{\mu}\{1,\gamma_{5}\}\chi \\ \mathcal{O}_{2a}^{ij} = & \left(\bar{u}_{R}^{i}\gamma_{\mu}u_{R}^{j}\right)\mathcal{J}_{a}^{\mu}, & \mathcal{O}_{3a}^{ij} = & \left(\bar{d}_{R}^{i}\gamma_{\mu}d_{R}^{j}\right)\mathcal{J}_{a}^{\mu}, \\ \mathcal{O}_{4a}^{ij} = & \left(\bar{Q}_{L}^{i}Hu_{R}^{j}\right)\mathcal{J}_{a}, & \mathcal{O}_{5a}^{ij} = & \left(\bar{Q}_{L}^{i}\tilde{H}d_{R}^{j}\right)\mathcal{J}_{a}, \end{aligned}$ full set includes other one  $\begin{aligned} \mathcal{J}_{S,P} = \bar{\chi}\{1,\gamma_{5}\}\chi \end{aligned}$
- full set includes other ops.

• use  

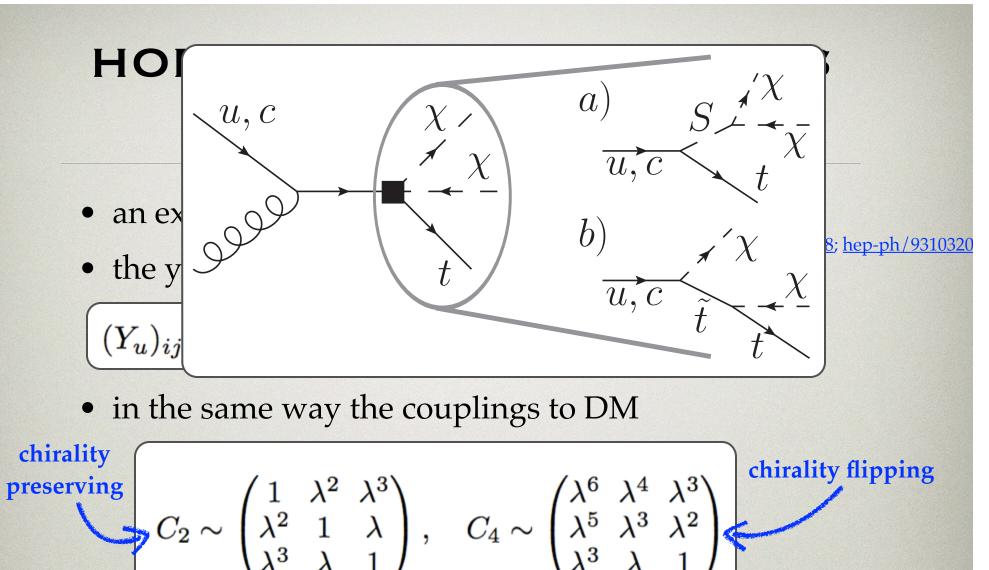
$$\begin{array}{c}
 u, c \\
 v, c \\
 v, \chi \\
 v, \chi \\
 v, \chi \\
 v, r \\
 v, \chi \\
 v, r \\
 v, \chi \\
 v, r \\$$


• use  
• onl  
• use  
• 
$$\chi_{\chi}$$
  
•  $\chi_{\chi}$   
•

# HORIZONTAL SYMMETRIES EXAMPLE

- an example: abelian horizontal symm.
  - Leurer, Nir, Seiberg hep-ph/9212278; hep-ph/9310320
- the yukawas are given by

 $(Y_u)_{ij} \sim \lambda^{|H(\bar{u}_R^j) + H(Q^i)|}, \quad (Y_d)_{ij} \sim \lambda^{|H(\bar{d}_R^j) + H(Q^i)|},$ 


• in the same way the couplings to DM



- note: *c*-*t*-DM coupling parametrically larger
- even larger effects if DM charged under flavor

J. Zupan Dark Matter and Continuous Flavor...

23

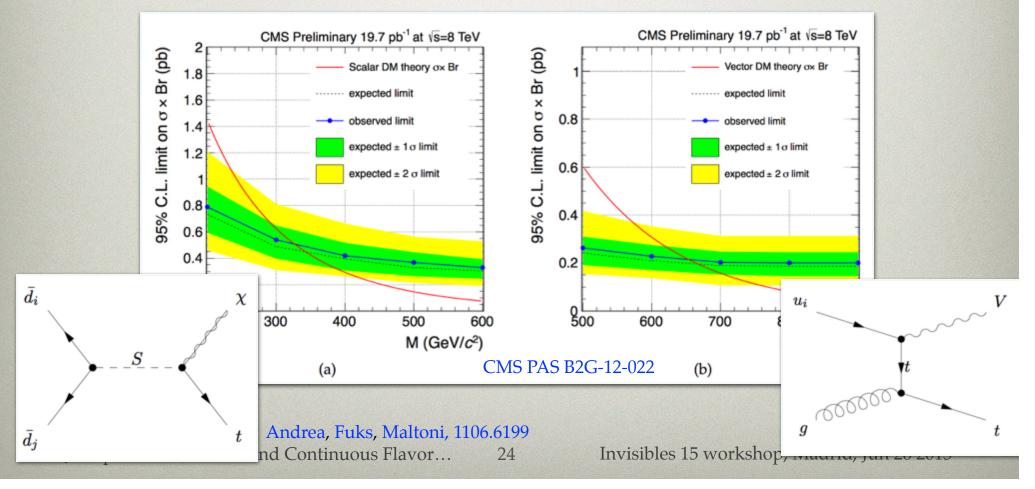


- note: *c*-*t*-DM coupling parametrically larger
- even larger effects if DM charged under flavor

23

J. Zupan Dark Matter and Continuous Flavor...

Invisibles 15 workshop, Madrid, Jun 26 2015


# MONOTOP EXPERIMENTAL RESULTS

CMS 1410.1149;

improves CDF 1202.5653;

see also ATLAS 1410.5404

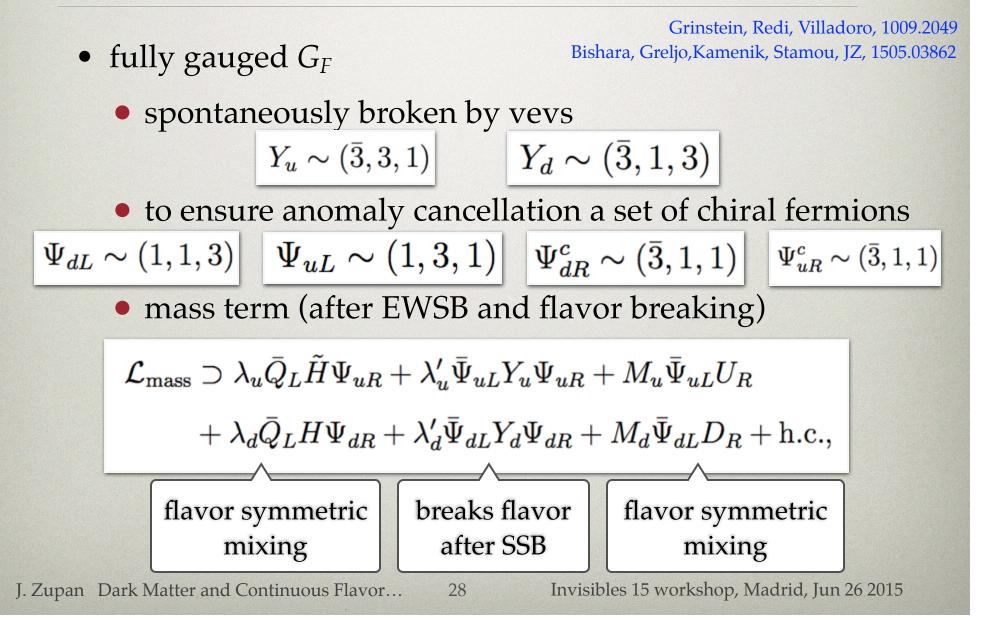
- CMS results on monotop searches
  - couplings set to 0.1
  - uses hadronic tops: 3j+MET channel



## CONCLUSIONS

- have shown three examples where flavor important for understanding DM
  - (meta-)stability of DM
  - monotop signals

# BACKUP SLIDES


## GENERAL FLAVORED DM

Bishara, Greljo, Kamenik, Stamou, JZ, 1505.03862

- basic requirement for flavored DM stable due to  $Z_3^{QUD}$ 
  - *G<sub>F</sub>* is a good symmetry in the UV
  - broken by spurions  $\phi_{vev}$  in representations with zero flavor triality
    - $(n_{vev} m_{vev}) \mod 3 = 0$ 
      - e.g., any vev in adjoint or bi-fundamental ok
  - stable color singlet(s) in representations with nonzero flavor triality

•  $(n_{\chi} - m_{\chi}) \mod 3 \neq 0$ 

## GAUGED FLAVOR SYMMETRY



## SM YUKAWAS

 the SM Yukawas are generated after Y<sub>u,d</sub> obtain vevs and Ψ<sub>i</sub> integrated out

$$y_u = \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle} \qquad \qquad y_d = \frac{\lambda_d M_d}{\lambda'_d \langle Y_d \rangle}$$

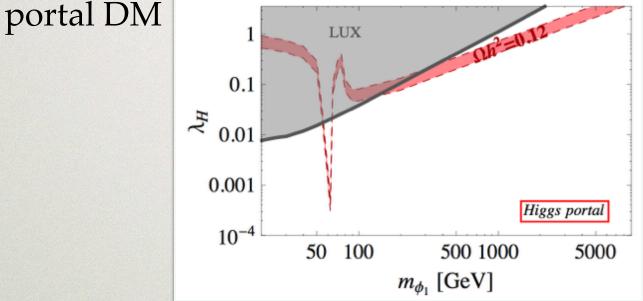
- note that the SM Yukawas are non-analytic in spurions  $\langle Y_{u,d} \rangle$ 
  - the model is not of the usual MFV-type
  - FGBs inverse mass hierarchy  $m_A^2 \sim (y_{ui}y_{uj})^{-1}$
  - low energy observables have MFV structure

## RADIATIVE SPLITTING

- if mass degeneracy broken only by radiative corrections
  - in the limit of  $m_{\chi} \ll m_A$

$$\underbrace{\overbrace{}}^{\chi}_{\chi} A_Q, A_U, A_D$$

$$\mathcal{L}_{\text{break}}^{\text{DM}} = -\frac{m_{\chi}g_U^2}{16\pi^2} \bar{\chi} \lambda^a (\log \mathcal{M}_A^2/\mu^2)^{ab} \lambda^b \chi,$$


- typical splitting ~few GeV to ~few 10GeV
  - long enough lifetimes that problems with BBN
- $\chi_1$  the lightest state

J. Zupan Dark Matter and Continuous Flavor...

30

## HIGGS PORTAL

• the scalar flavored DM behaves exactly like Higgs



• the DM multiplet split at tree level

$$\mathcal{L} \supset \kappa(\phi^{\dagger}\lambda^{a}\phi)\mathrm{Tr}(Y_{u}^{\dagger}\lambda^{a}Y_{u})$$

• the only remnant of gauged flavor symmetries at low eng. is the stability of DM

J. Zupan Dark Matter and Continuous Flavor...

31

Invisibles 15 workshop, Madrid, Jun 26 2015

## SCALAR FLAVORED DM

- introduce a scalar in fundamental of  $SU(3)_U$  $\phi \sim (1, 3, 1)$
- dominant interaction with the SM through Higgs portal

$$\mathcal{L}_{\rm int}^{\rm DM} = \lambda_H (\phi^{\dagger} \phi) (H^{\dagger} H)$$

FGB exchanges are sub-leading
no longer required m<sub>x</sub>~m<sub>A</sub>/2

## ASYMMETRIC DM

## • cosmological history of the ADM

| $T \gg T_{\rm ewpt}$  | $B \longleftrightarrow \Delta \chi$                                       | Asymmetric operators in equilibrium.<br>Baryon asymmetry transferred to DM. |
|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $T_f > T_{\rm EWPT}$  | $B \longleftrightarrow \Delta \chi$                                       | Asymmetric operators freezeout.<br>DM number separately conserved.          |
| $T \lesssim m_{\chi}$ | $\chi \bar{\chi} \longrightarrow \mathrm{SM},  \gamma_d \gamma_d,  \dots$ | Symmetric component of DM is<br>efficiently annihilated away.               |

from a slide by F. Bishara, talk at Notre Dame

note: more complicated cosmological histories
 possible
 see e.g., Falkowski, Ruderman, Volansky, 1101.4936

J. Zupan Dark Matter and Continuous Flavor...

## OUR AIM

Bishara, JZ, 1408.3852

- for a subset of ADM models
  - the Z<sub>2</sub> that ensures the stability is *accidental* and *approximate*
- as a result
  - DM is metastable
  - decay times potentially close to its present observational bound  $\tau \ge 10^{26} s$
- the mediators can be below TeV
  - realistic flavor structure essential

## DM MASS

• the relation  $\Omega_{DM} \sim 5.4 \ \Omega_{baryon}$  fixes the DM mass

Bishara, JZ, 1408.3852

assuming SM visible sector

$$m_{\chi} = m_p \frac{\Omega_{\chi}}{\Omega_B} \frac{B}{B-L} \frac{B-L}{\Delta \chi} = (12.5 \pm 0.8) \text{GeV} \frac{1}{(B-L)_{\chi}^{\text{sum}}}$$

$$(B-L)_{\chi}^{\text{sum}} \equiv \sum_{i} \hat{g}_{\chi}^{i} (B-L)_{\chi}^{i}$$

• for instance, for a Dirac fermion  $g_{\chi}=2$ 

$$m_{\chi} = (6.2 \pm 0.4) \text{GeV} \frac{1}{(B-L)_{\chi}}$$

 $m_{\chi} = \{6.2, 3.1, 2.1\} \text{GeV}, \quad \text{for} \quad (B-L)_{\chi} = \{1, 2, 3\},$ 

- note: for *B*=3 DM cannot decay
  - accidental Z<sub>2</sub> (which is exact if B is exact)

J. Zupan Dark Matter and Continuous Flavor...

35

Invisibles 15 workshop, Madrid, Jun 26 2015

## ASYMMETRIC DM

• cosmological history of the ADM

| $T \gg T_{\rm ewpt}$  | $B \longleftrightarrow \Delta \chi$                                       | Asymmetric operators in equilibrium.<br>Baryon asymmetry transferred to DM. |
|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $T_f > T_{\rm EWPT}$  | $B \iff \Delta \chi$                                                      | Asymmetric operators freezeout.<br>DM number separately conserved.          |
| $T \lesssim m_{\chi}$ | $\chi \bar{\chi} \longrightarrow \mathrm{SM},  \gamma_d \gamma_d,  \dots$ | Symmetric component of DM is<br>efficiently annihilated away.               |

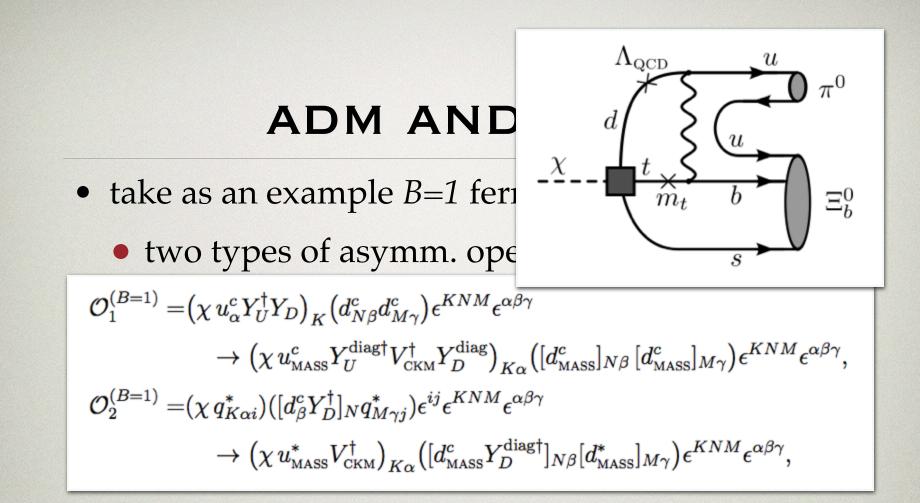
- symmetric annihilation needs to be efficient
  - have nothing new to say, a number of scenarios proposed

see e.g., Bhattacherjee, Matsumoto, Mukhopadhyay, Nojiri, 1306.5878; March-Russell, McCullough, 1106.4319; Lin, Yu, Zurek, 1111.0293 J. Zupan Dark Matter and Continuous Flavor... 36 Invisibles 15 workshop, Madrid, Jun 26 2015

# FREEZE-OUT OF ASYMMETRIC INTERACTIONS

• asymmetric operators, schematic form for B=2

$$\mathcal{O}_{\mathrm{asymm.}} \sim rac{C}{\Lambda^6} \chi(qq)^3,$$


- leads to asymmetric  $2 \rightarrow 5$  interactions in the early universe
  - the freeze-out should be above EW phase transition
  - gives lower bounds:
    - Λ>730 GeV (Froggatt-Nielsen flavor model)
    - Λ>400 GeV (MFV breaking)
- naively expect that asymmetric mediators not much heavier
  - then self-consistent framework (need small  $m_{\chi}$  for metastable DM)
    - at very high  $\Lambda$  the direct relation between  $m_{\chi}$  and  $m_p$  is lost
  - however, easy to think of models with very massive mediators

## ADM AND MFV

- take as an example *B*=1 fermionic ADM
- two types of asymm. operators  $\mathcal{O}_{1}^{(B=1)} = (\chi \, u_{\alpha}^{c} Y_{U}^{\dagger} Y_{D})_{K} (d_{N\beta}^{c} d_{M\gamma}^{c}) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma} \\ \rightarrow (\chi \, u_{MASS}^{c} Y_{U}^{\text{diag}\dagger} V_{CKM}^{\dagger} Y_{D}^{\text{diag}})_{K\alpha} ([d_{MASS}^{c}]_{N\beta} [d_{MASS}^{c}]_{M\gamma}) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}, \\ \mathcal{O}_{2}^{(B=1)} = (\chi \, q_{K\alpha i}^{*}) ([d_{\beta}^{c} Y_{D}^{\dagger}]_{N} q_{M\gamma j}^{*}) \epsilon^{ij} \epsilon^{KNM} \epsilon^{\alpha\beta\gamma} \\ \rightarrow (\chi \, u_{MASS}^{*} V_{CKM}^{\dagger})_{K\alpha} ([d_{MASS}^{c} Y_{D}^{\text{diag}\dagger}]_{N\beta} [d_{MASS}^{*}]_{M\gamma}) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma},$

### from here an NDA estimate for decay width

$$\begin{split} \Gamma_{\chi}^{(1)} &\sim \frac{(y_t y_b)^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \left(\frac{1}{16\pi^2} \frac{m_t \Lambda_{\rm QCD}}{m_W^2}\right)^2 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} {\rm GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.0 \cdot 10^6 {\rm TeV}}{\Lambda}\right)^4, \\ \Gamma_{\chi}^{(2)} &\sim \frac{|y_b V_{ub}|^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} {\rm GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.3 \cdot 10^7 {\rm TeV}}{\Lambda}\right)^4, \end{split}$$



#### from here an NDA estimate for decay width

$$\begin{split} \Gamma_{\chi}^{(1)} &\sim \frac{(y_t y_b)^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \left(\frac{1}{16\pi^2} \frac{m_t \Lambda_{\rm QCD}}{m_W^2}\right)^2 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} {\rm GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.0 \cdot 10^6 {\rm TeV}}{\Lambda}\right)^4, \\ \Gamma_{\chi}^{(2)} &\sim \frac{|y_b V_{ub}|^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} {\rm GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.3 \cdot 10^7 {\rm TeV}}{\Lambda}\right)^4, \end{split}$$

## **FN MODELS**

- U(1) Froggatt-Nielsen (FN) models of spontaneously broken horizontal symmetries
  - quarks carry horizontal charges  $H(q_i), \ldots$
- the two B=1 operators

$$\mathcal{O}_1^{(B=1)} = (\chi \, d_K^c) \, (u_N^c d_M^c) \to (\chi \, [d_{\text{MASS}}^c]_K) \, ([u_{\text{MASS}}^c]_N [d_{\text{MASS}}^c]_M),$$

$$\mathcal{O}_{2}^{(B=1)} = (\chi \, q_{Ki}^{*}) (d_{N}^{c} q_{Mj}^{*}) \epsilon^{ij} \to (\chi \, [u_{\text{MASS}}^{*}]_{K}) \left( [d_{\text{MASS}}^{c}]_{N} [d_{\text{MASS}}^{*}]_{M} \right),$$

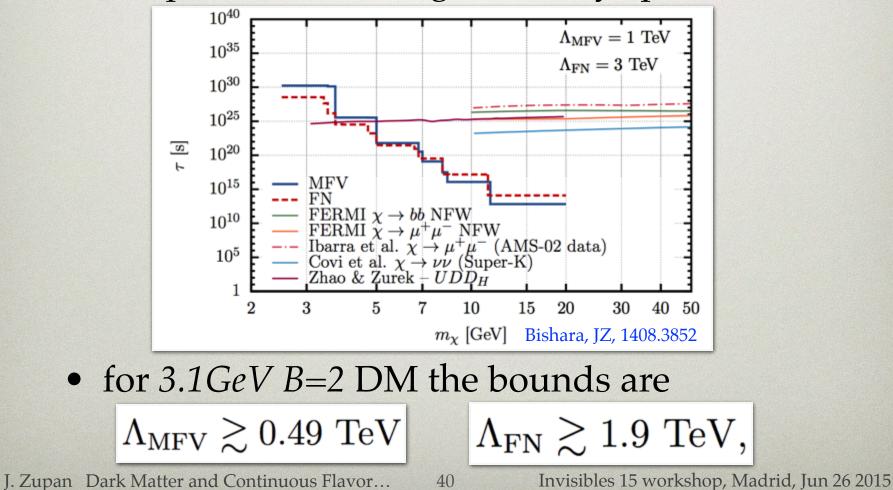
#### have Wilson coefficients

$$C_1 \sim \lambda^{|H(d_K^c) + H(u_N^c) + H(d_M^c)|}, \qquad C_2 \sim \lambda^{|-H(q_K) + H(d_N^c) - H(q_M)|}$$

• expansion parameters 
$$\lambda \sim 0.2$$

• we use the phenomenologically viable assignments:

Leurer, Nir, Seiberg <u>hep-ph/9212278</u>; <u>hep-ph/9310320</u>

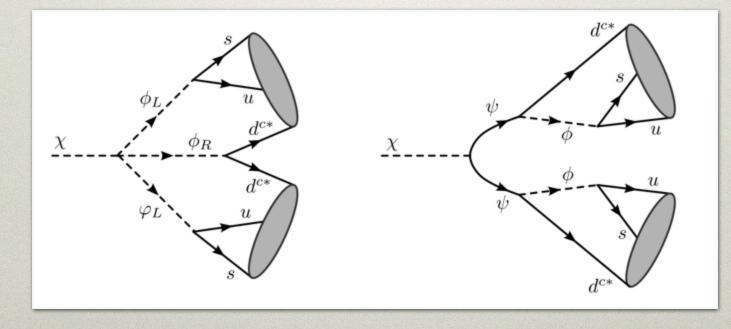

J. Zupan Dark Matter and Continuous Flavor... 39

$$\mathcal{L} = \sum_{i} rac{C_i}{\Lambda^{(D_i - 4)}} \mathcal{O}_i.$$

$$H(q, d^{c}, u^{c}) \Rightarrow \begin{array}{c} q \\ d^{c} \\ u^{c} \\ \end{array} \begin{pmatrix} 3 & 2 & 0 \\ 3 & 2 & 2 \\ 3 & 1 & 0 \\ \end{pmatrix},$$

## INDIRECT DETECTION CONSTRAINTS

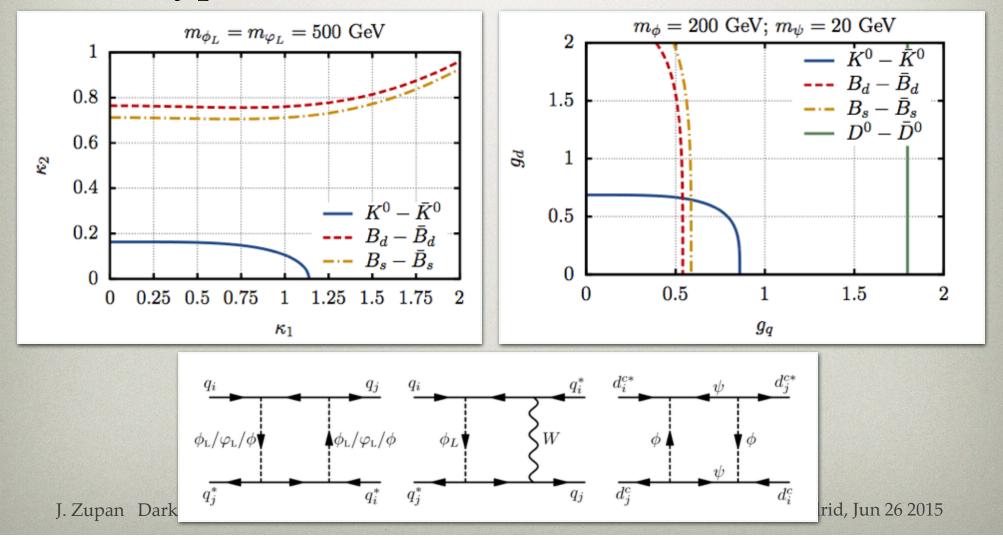
• the most relevant indirect constraints from antiproton flux and gamma ray spectra




## MEDIATOR MASS

- these bounds imply for the mass of asymmetric mediators
  - MFV: *m<sub>mediator</sub>* >490 (210, 90)GeV
  - FN: *m<sub>mediator</sub>* >1900 (830, 360)GeV
  - if asymmetric operators are generated at tree(1-loop,2-loop)-level
- these mediators can be searched for at the LHC
- note: without flavor structure the bound would be  $\Lambda$ >7.3 TeV
  - out of LHC reach

## MEDIATOR MODELS


- for LHC pheno. consider two toy-model completions
  - MFV model with scalar mediators
  - FN model with fermionic and scalar mediators



42

### FLAVOR BOUNDS



