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✘ CB, Bordone 14

It’s not possible to explain the discrepancy


adding to the SM a single fermion
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In a particular 2HDM


if lighter than 200 GeV

(from S1 and S2 results)
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It’s a SUSY model without R-parity (with U(1)R) 


where there are NO chiral Higgs superfields:


the Higgs is identified with a sneutrino

W � YdL�QD L� = (�̃� � H, ��)

Ydh
0bLbR + Ydl�tLb̃R + ...

l� � µIn our case            , the bR coupling is fixed to be Yb

aLQ
µ � v2Y 2

b

M2
LQ

we have a prediction for MLQ

Mb̃R
� 500GeV
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In the Higgsinoless MSSM we can explain the (g-2) anomaly


with a sbottom of mass 

Which are the current bounds?

In our model: b̃R � bL�L

tLlL
(bRG̃)

same BR

Mb̃R
� 500 GeV

This possibility is viable, to confirm/exclude it


     look for final states with top and charged leptons!!!



Conclusions
We have considered single particle extensions of the SM 
(scalar & fermion)



A single new fermion cannot explain the (g-2)μ anomaly



Only 3 scalars -2 leptoquarks and a second Higgs doublet- can 
do it



The bR of the Higgsinoless MSSM could solve the (g-2)μ puzzle 
and we have a prediction for its mass:



Most of these solutions are going to be tested @ LHC13



Wait for new LHC run and new (g-2)μ experiment!

Mb̃R
� 500 GeV

Muchas 
gracias

!

~


