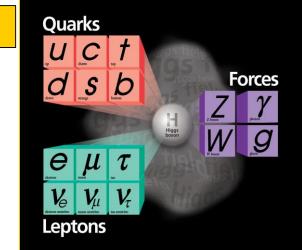


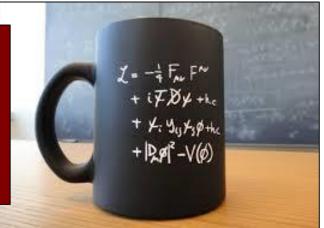
Physics opportunities at future high-energy colliders

CEPC+SppC 布局图

Present questions in particle physics
 Main options for future high-E colliders and their physics case

Fabiola Gianotti, CERN Physics Department Invisible15, Madrid, 26/6/2015


What did we accomplish so far in particle physics?


With the discovery of the Higgs boson, we have completed the Standard Model (> 50 years of theoretical and experimental efforts !)

Note: fermions (c, b, t, τ) discovered at accelerators in the US, bosons (g, W, Z, H) in Europe ...

We have tested the Standard Model with very high precision (wealth of measurements since early '60s, in particular at accelerators)

- → it works BEAUTIFULLY (puzzling ...)
- → no significant deviations observed (but difficult to accommodate non-zero neutrino masses)

However: SM is not a complete theory of particle physics, as several outstanding questions remain, raised also by experimental observations (e.g. dark matter, Universe's accelerated expansion) that cannot be explained within the SM.

These questions require NEW PHYSICS

Main questions in today's particle physics (a non-exhaustive list ..)

Why is the Higgs boson so light (so-called "naturalness" or "hierarchy" problem)?

What is the origin of the matter-antimatter asymmetry in the Universe?

Why 3 fermion families ? Do neutral leptons, charged leptons and quarks behave similarly?

What is the origin of neutrino masses and oscillations?

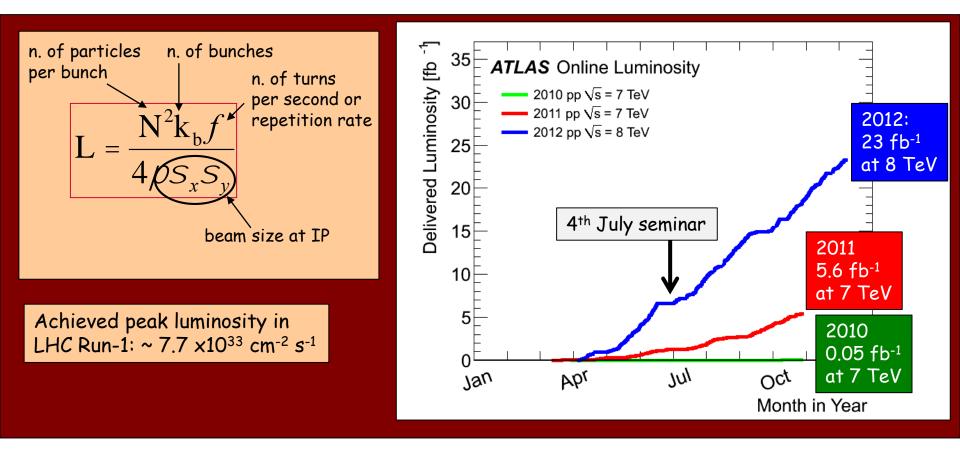
What is the composition of dark matter (23% of the Universe)?

What is the cause of the Universe's accelerated expansion (today: dark energy ? primordial: inflation ?)

Why is Gravity so weak?

Puzzling: NO evidence of new physics from LHC (yet ...)

In other words: at what E scale(s) are the answers to these questions?

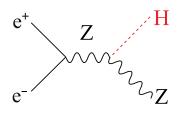

These questions are compelling, difficult and intertwined \rightarrow require all approaches we have in hand (made possible also by strong advancements in accelerator and detector technologies): high-E colliders, neutrino experiments (solar, short/long baseline, reactors, $0v\beta\beta$ decays), cosmic surveys, dark matter direct and indirect detection, precision measurements of rare decays and phenomena, dedicated searches (WIMPS, axions, dark-sector particles), ...

Main questions and main approaches to address them

	High-E colliders	High-precision experiments	Neutrino experiments	Dedicated searches	Cosmic surveys
Higgs , EWSB	×				
Neutrinos	×		×	×	×
Dark Matter	×			×	
Flavour, CP-violation	×	×	×	×	
New particles and forces	×	×	×	×	
Universe acceleration					×

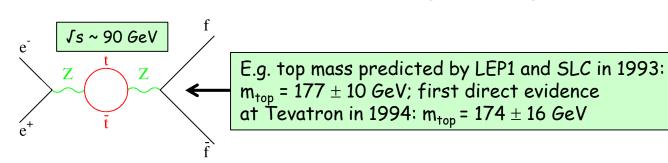
Combination of ALL these complementary approaches crucial to explore the largest range of E scales, properly interpret signs of new physics \rightarrow build coherent picture of underlying theory

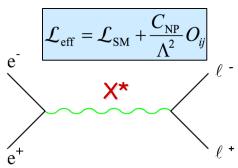
Luminosity of a collider



$$\mathsf{N} = \int \mathsf{Ldt} \times \sigma \,(\mathsf{pp} \to \mathsf{X})$$

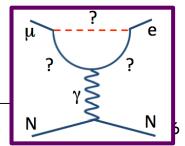
3 main <u>complementary</u> ways to search for (and study) new physics at accelerators


Direct production of a given (new or known) particle


e.g.: Higgs production at future e^+e^- linear/circular colliders at $\int s \sim 250$ GeV through the HZ process \rightarrow need high E and high L

Indirect precise measurements of known processes

→ look for (tiny) deviations from SM expectation from quantum effects (loops, virtual particles) → sensitivities to E-scales $\Lambda \gg \sqrt{s}$ → need high E and high L

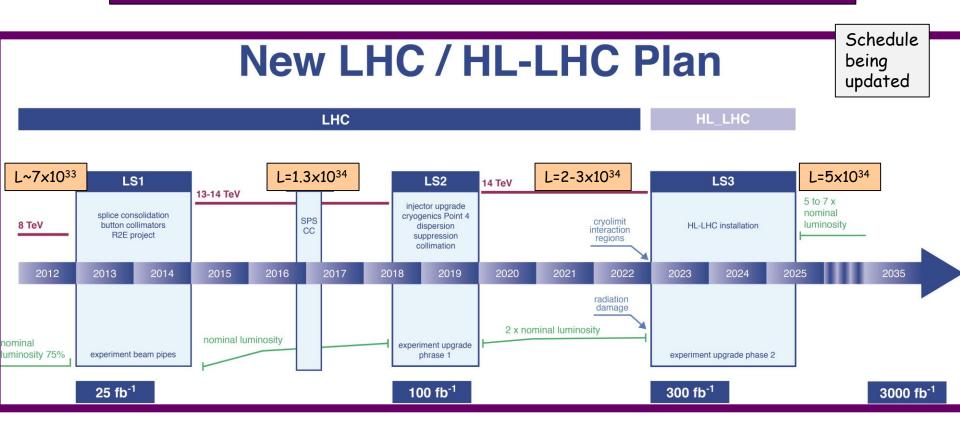


Rare processes suppressed in SM \rightarrow could be enhanced by New Physics

e.g. neutrino interactions, rare decay modes \rightarrow need intense beams, ultra-sensitive (massive) detectors ("intensity frontier")

E.g. transitions between charged leptons of different families with Lepton-Flavour-Violation: $\mu \rightarrow e\gamma$ (MEG@PSI), $\mu \rightarrow e$ (COMET@JPARC, Mu2e@FNAL). Suppressed in SM, can occur if new physics Note: flavour violation observed for v (e.g. $v_{\mu} \rightarrow v_{e}$) and quarks (e.g. $t \rightarrow$ Wb)

s pp colliders
$p = E_{beam} = \sqrt{s/2}$ $p \longrightarrow \sqrt{\hat{s}} \qquad x_2 p \qquad p$ $p \longrightarrow p$ Energy of elementary interaction not known $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s} < \sqrt{s}$
Elementary interaction (hard) + interaction of "spectator" q,g (soft) overlap in detector
EW processes suffer from huge backgrounds from strong processes → detector performance!
Synchrotron radiation is ~ (m _p /m _e) ⁴ ~ 10 ¹³ smaller
Ļ
high energy easier to achieve \rightarrow ideal machines for discovery at energy frontier


Note: this is an oversimplified picture ! Many discoveries at e⁺e⁻ machines (τ-lepton, gluon, etc.) and beautiful precision measurements at hadron colliders (W mass, B-physics, etc.)

Options for and physics potential of future high-energy colliders

Linear and circular e⁺e⁻ colliders
 Very high-E proton-proton colliders

Disclaimer: due to time limitation, I will not discuss other opportunities (µµ, ep, yy colliders)

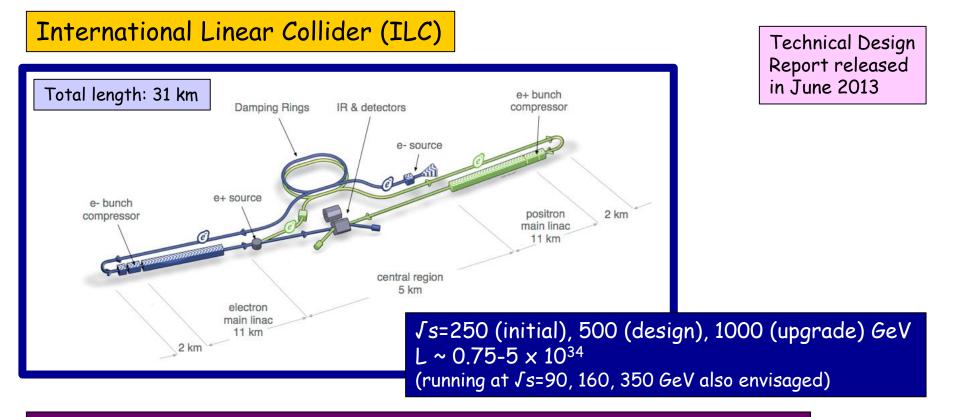
The present and near/medium-term future: LHC and HL-LHC

Full exploitation of LHC project with HL-LHC ($\int s \sim 14 \text{ TeV}$, 3000 fb⁻¹) is crucial

Present highest-E accelerator:

 \rightarrow detailed direct exploration of the TeV scale up to m ~ 10 TeV

 \rightarrow measurements of Higgs couplings to few percent


Results will inform the future

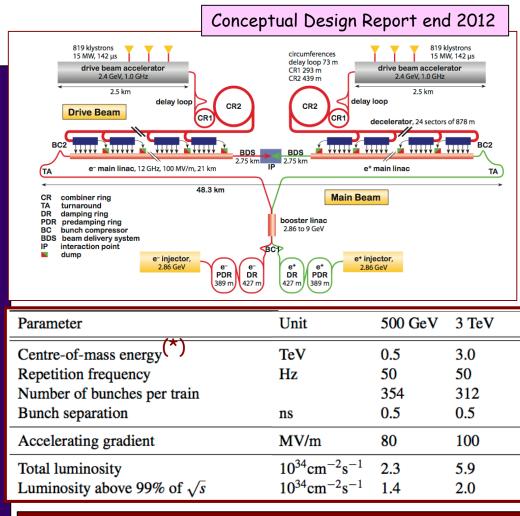
Future high-E e⁺e⁻ colliders

 $L \sim 10^{34} - 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

√s (GeV)	Main physics goals
90	Z-boson precision EW measurements beyond LEP, SLC
180	WW precision physics (mass at threshold)
250	Higgs precision physics (HZ)
350	Higgs precision physics (HZ, Hvv), top precision physics (mass at threshold)
500-3000	ttH, HH (including self-couplings), direct searches for new physics

		A Ana anti-anti-a constraints (C. S. A.	· · · · · · · · · · · · · · · · · · ·	Necretaine Gett
Complementary	Linear colliders	A data a data	Circular colliders	
√s reach	reach multi-TeV		limited to < 500 GeV by synchrotron radiation SR ~	E^4_{beam}/Rm^4
Luminosity \overbrace{e}^{e}	low repetition r → L from squee beams to ~ n → large beamst	zing m size	large number of continuousl circulating bunches → large → smaller beamstrahlung → cleaner environment, sma	r beam size
Injection	fresh bunches r be injected at e		short L lifetime (~ 30') due t \rightarrow continuous top-up e [±] inje	
Lvs √s	increases at hig (beam size decrea		increases at low E (less SR \rightarrow RF power accelerates more bunch	
Number of interaction regions	1		several	

Main challenges:


- ~ 15000 SCRF cavities (1700 cryomodules), 31.5 MV/m gradient
- I TeV machine requires extension of main Linacs (50 km) and 45 MV/m
- Positron source; suppression of electron-cloud in positron damping ring
- Final focus: squeeze and collide nm-size beams

 Japan interested to host → decision ~2018 based also on ongoing international discussions Mature technology: 20 years of R&D experience worldwide (e.g. European xFEL at DESY is 5% of ILC, gradient 24 MV/m, some cavities achieved > 30 MV/m)
 → Construction could technically start ~2019, duration ~10 years → physics could start ~2030

Compact Linear Collider (CLIC)

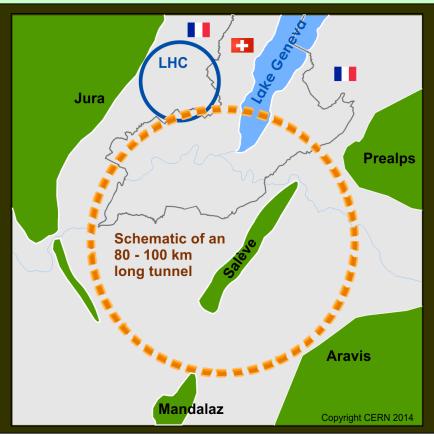
Main challenges:

- 100 MV/m accelerating gradient needed for compact (50 km) multi-TeV (up to 3 TeV) collider
- □ Short (156 ns) beam trains → bunch spacing 0.5 ns to maximize luminosity
- Keep RF breakdown rate small
- 2-beam acceleration (new concept): efficient RF power transfer from low-E high-intensity drive beam to (warm) accelerating structures for main beam
- □ Power consumption (~600 MW !)
- Preservation of nm size beams and final focus
- Detectors: huge beamstrahlung background (20 TeV per beam train in calorimeters at √s=3 TeV)
 → 1-10 ns time stamps needed

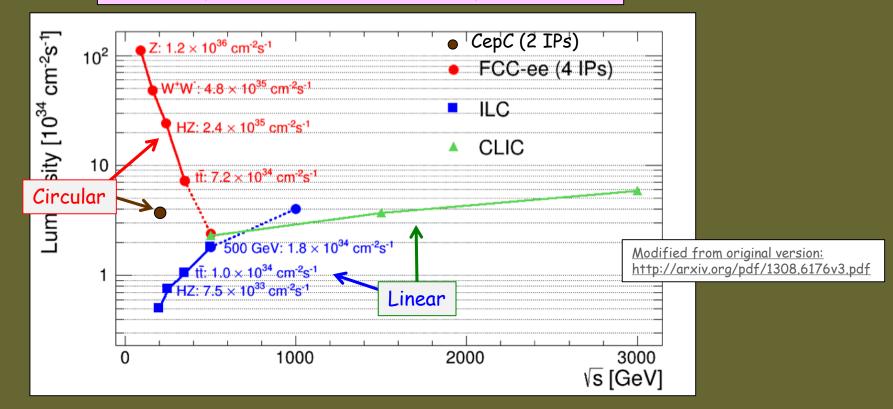
(*) Currently optimizing for initial stage at √s=350 GeV

If decision to proceed in ~2018 \rightarrow construction could technically start ~2024, duration ~6 years for $\int s \le 500 \text{ GeV}$ (26 km Linac) \rightarrow physics could start 2030++

Future high-energy circular colliders


Parameters are indicative and fast evolving, as no CDR yet

China: 50-70 km e⁺e⁻ ∫s=240 GeV (CepC) followed by 50-90 TeV pp collider (SppC) in same tunnel 50 km e⁺e⁻ machine + 2 experiments: pre-CDR submitted construction: 2021-2027 □ data-taking: 2028-2035 Possible site: Best beach & cleanest air Qinghungdao Summer capital of China Qinhuangdao Beijing 300 km o北京市 Beidaihe 廊坊市 Tianjing Y. F. Wang


CERN FCC: international design study for Future Circular Colliders in 80-100 km ring:

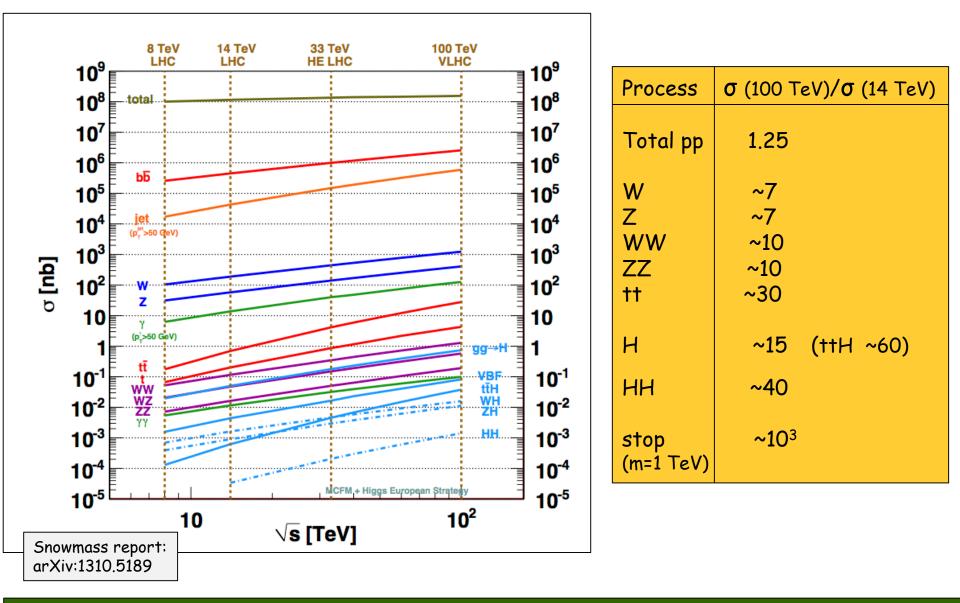
- □ 100 TeV pp: ultimate goal (FCC-hh)
- □ 90-350 GeV e⁺e⁻: possible intermediate step (FCC-ee)
- \Box $\int s= 3.5-6$ TeV ep: option (FCC-eh)

Goal of the study: CDR in ~2018.

Summary of e⁺e⁻ colliders main parameters

Some typical energy points only

	Size	√s	RF	L per IP	Bunch/train	σ _x	σ _y	Lumi within	Long. polarisation
	km	GeV	MV/m	10 ³⁴	x-ing rate(Hz)	μm	nm	1% of √s	e [_] /e ⁺
CEPC	54	240	20	1.8	4×10 ⁵	74	160	>99%	considered
FCC-ee	100	240	20	6	2×10 ⁷	22	45	>99%	considered
ILC	31	250	14.7	0.75	5	0.7	7.7	87%	80%/30%
ILC	31	500	31.5	1.8	5	0.5	5.9	58%	80%/30%
CLIC	48	3000	100	6	50	0.04	1	33%	80%/considered


Future pp colliders

	Ring (km)	Magnets (T)	√s (TeV)	L (10 ³⁴)	p(TeV) = 0.3 B(T) R(km)
LHC	27	8.3	14	up to 5	Magnet technology:
HE-LHC	27	16-20	26-33	5	Nb ₃ Sn ok up to 16 T; HTS=High-Temperature-
SppC-1 SppC-2	50 70	12 19	50 90	2 2,8	Superconductors needed for 20 T
FCC-hh	100	16	100	c ≥5 ←	May reach ~2×10 ³⁵

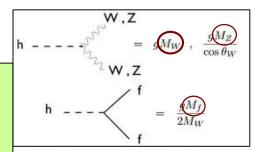
More parameters of 100 TeV FCC-hh

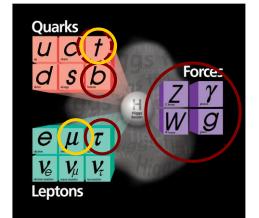
	HL-LHC	FCC-hh	
Bunch spacing	25	5-25	Challenges (many, daunting,):
N. of bunches	2808	10600	magnet technology, tunnel excavation,
Pile-up	140	170	stored beam energy,
E-loss/turn	7 keV	5 MeV	
SR power/ring	3.6 kW	2.5 MW	
Interaction Points	4	4	
Stored beam energy	390 MJ	8.4 GJ	As an Airbus 380 at full speed

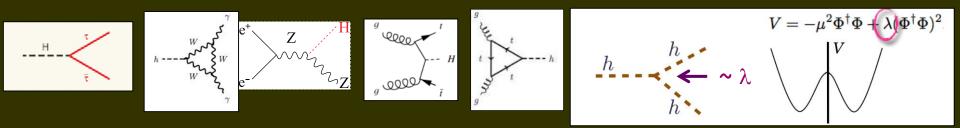
Cross sections vs $\int s$

 \rightarrow With 10000/fb at $\int s=100$ TeV expect: 10¹² top, 10¹⁰ Higgs bosons, 10⁸ m=1 TeV stop pairs, ...

F. Gianotti, Invisible15, Madrid, 26/6/2015

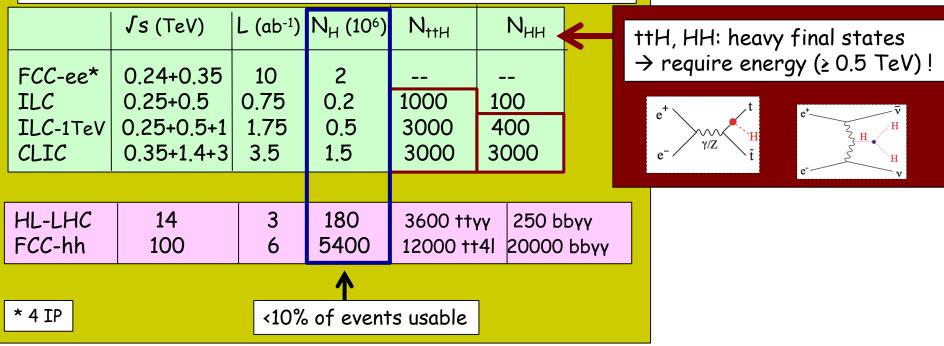

The Higgs boson as a door into new physics ?


Impact of New Physics on Higgs couplings to fermions and bosons


 $\Delta \kappa / \kappa \sim 5\% / \Lambda^2_{NP}$ (Λ_{NP} in TeV)

Scenarios exist with no new particles observable at LHC \rightarrow New Physics would appear only through deviations to H couplings \rightarrow 0.1-1% experimental precision needed for discovery

Higgs couplings from studies of: \Box decays (direct or via loops): $H \rightarrow ZZ$, WW, $\gamma\gamma(loop)$, bb, TT, cc, $\mu\mu$ \Box production: WH, ZH, ttH, gg \rightarrow H (loop) In addition: self couplings $H \rightarrow$ HH

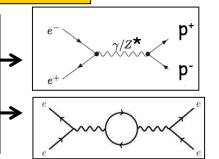

LHC Run-1: ~20% precision on couplings to bosons and 3rd generation fermion (ttH indirect) LHC 14 TeV, 300 fb⁻¹ (~2023): 5-10% precision

- HL-LHC:
- □ 2-5% for most couplings

□ first direct observation of couplings to top (ttH \rightarrow ttyy) and 2nd family fermions (H \rightarrow µµ)

Higgs self-coupling ?

Integrated luminosities correspond to 10 years of running (3-5 years at each \sqrt{s}) for e⁺e⁻ and 5 years with 2 experiments for pp


Couplings to "light particles" K_W , K_Z , K_g , K_c , K_τ , K_b : best measurements (few 0.1%) at FCC-ee (clean; luminosity) Couplings derived from heavy final states:
K_t: best measurements (≤5%) at HL-LHC, ILC(1000), CLIC, FCC-hh
K_{HH} (self-couplings): best measurements (~ 10%) at ILC(1000), CLIC, FCC-hh (heavy final state → energy)

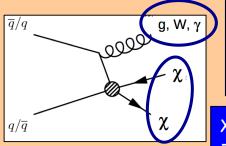
Rare decays: K_{μ} , K_{γ} Best measurements (few 1%) at HL-LHC, FCC-ee, FCC-hh, ILC (1000), CLIC (luminosity and/or energy)

Direct and indirect sensitivity to high-E new physics

- □ Direct: discovery potential for new particles coupling to Z/γ^* up to m ~ $\sqrt{s/2}$
- □ Indirect: via precise measurements \rightarrow ILC/CLIC/FCC-ee can probe up to Λ_{NP} ~O(100) TeV

HL-LHC (3000 fb⁻¹):

- Direct: discovery potential up to m~10 TeV for single particles (~30% larger than 300 fb⁻¹)
- □ Indirect sensitivity up to ~50 TeV (e.g. quark compositeness scale)


A 100 TeV pp collider is the instrument to explore the 10-50 TeV E-scale directly

Examples:

Discovery potential for excited quarks q* (expected if quarks are composite): m ~ 50 TeV Discovery potential for Z' (expected if additional forces exist): m ~ 30 TeV Discovery potential for SUSY squarks and gluinos (pair produced): m ~ 15 TeV

SUSY has excellent candidate for dark matter (lightest neutralino χ^0): discovery reach up to ~ 4 TeV \rightarrow cover most of region allowed by cosmology

Mono-jet/y/W from initial-state radiation provides trigger

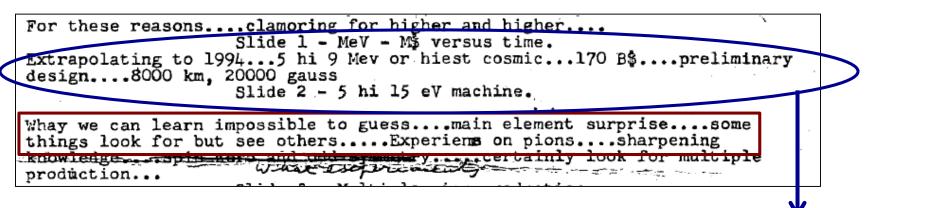
x⁰ are invisible → missing E

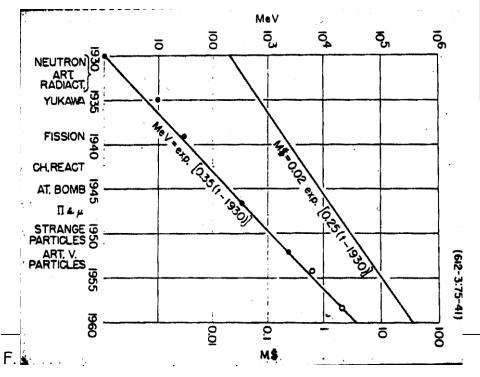
SUSY would also explain why Higgs mass is so light ("naturalness" problem)

Conclusions

The extraordinary success of the LHC is the result of the ingenuity, vision and perseverance of the worldwide HEP community, and of more than 20 years of talented, dedicated work \rightarrow the demonstrated strength of the community is an asset also for future, even more ambitious, projects.

With the discovery of a Higgs boson, after > 50 years of superb theoretical and experimental work the SM is now complete. However major questions remain.


The full exploitation of the LHC, and more powerful future accelerators, will be needed to address them and to advance our knowledge of fundamental physics.


No doubt that future high-E colliders are extremely challenging projects Didn't the LHC also look close-to-impossible in the '80s ??

However: the correct approach, as scientists, is not to abandon our exploratory spirit, nor give up to financial and technical challenges. The correct approach is to use our creativity to develop the technologies needed to make future projects financially and technically affordable

We already did so in the past ... \rightarrow

From E. Fermi, preparatory notes for a talk on "What can we learn with High Energy Accelerators ?" given to the American Physical Society, NY, Jan. 29th 1954

Fermi's extrapolation to year 1994: 2T magnets, R=8000 km (fixed target !), $E_{beam} \sim 5 \times 10^3 \text{ TeV} \rightarrow Js \sim 3 \text{ TeV}$ Cost : 170 B\$

Was that hopeless ??

We have found the solution: we have invented colliders and superconducting magnets ... and built the Tevatron and the LHC

How to choose the future high-E collider project(s)?

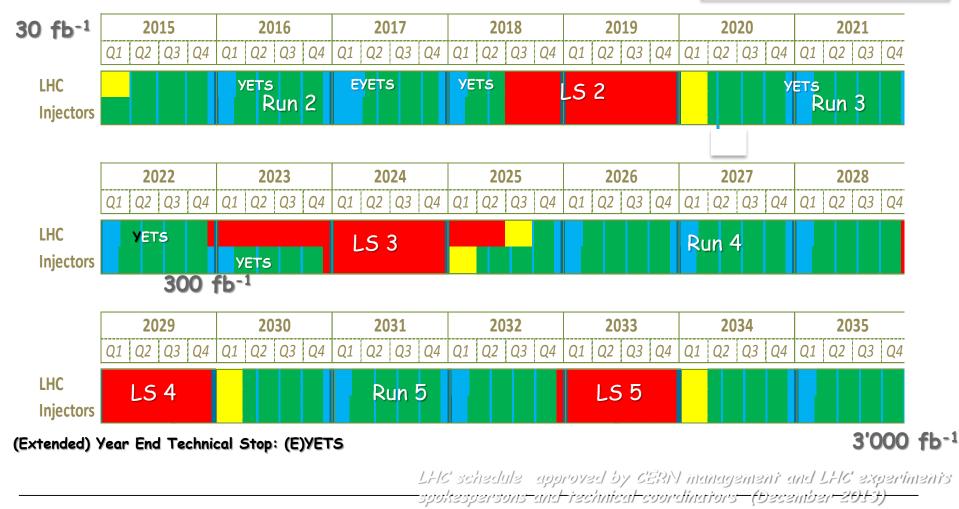
LHC Run-1 brought us a certitude: the Higgs boson as the key of EWSB
 H(125) needs to be studied with the highest precision → door to new physics ?
 → low m_H makes H accessible to both circular and linear colliders, with different pros/cons
 complete exploration of EWSB needed (HH production, V_LV_L scattering, look for possible new dynamics, etc.) → requires multi-TeV energies

LHC Run-2 and beyond may (hopefully !) bring additional "no-lose theorems":
 if new (heavy) physics is discovered
 →completion of spectrum and detailed measurements of new physics likely require multi-TeV energies
 if indications emerge for the scale of new physics in the 10-100 TeV region (e.g. from dijet angular distributions → A compositeness)

 \rightarrow need the highest-energy pp collider to probe directly the scale of new physics

Regardless of the detailed scenario, and even in the absence of theoretical/experimental preference for a specific E scale, the directions for future high-E colliders are clear: ☐ highest energy → to explore directly E scales of 10-100 TeV ☐ highest precision → to probe the largest E scales indirectly → possibly up to few 100 TeV

Thanks also to great technology progress, many scientifically strong opportunities are available: none of them is easy, none is cheap. Decision on how to proceed, and the time profile of the projects, depends on science (LHC results), technology maturity, cost and funding availability, global (worldwide) perspective

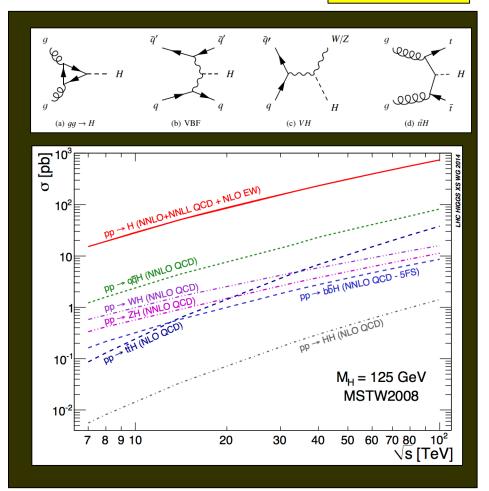

0 0

Main questions in today's particle physics

 Higgs boson and EWSB □ m_H natural or fine-tuned ? → if natural: what new physics/symmetry? □ does it regularize the divergent V_LV_L cross-se at high M(V_LV_L) ? Or is there a new dynamics □ elementary or composite Higgs ? □ is it alone or are there other Higgs bosons ? 		Neutrinos: v masses and and their origin what is the role of H(125)? Majorana or Dirac? CP violation additional species? sterile v?		
 origin of couplings to fermions coupling to dark matter ? does it violate CP ? cosmological EW phase transition (is it responsible for baryogenesis ?) 	Cor axi Cone	 Dark matter: composition: WIMP, sterile neutrinos, axions, other hidden sector particles, one type or more ? only gravitational or other interactions ? 		
 The two epochs of Universe's accelerated expan □ primordial: is inflation correct ? which (scalar) fields? role of quantum gravity □ today: dark energy (why is ∧ so small?) or gravity modification ? 		Quarks and leptons: Why 3 families ? Masses and mixing CP violation in the lepton sector matter and antimatter asymmetr baryon and charged lepton		
Physics at the highest E-scales: how is gravity connected with the other ford do forces unify at high energy ?	es?	number violation		

LHC schedule beyond LS1

- LS2 starting in 2018 (July)
- LS3 LHC: starting in 2023 Injectors: in 2024
- => 18 months + 3 months BC
- => 30 months + 3 months BC
 => 13 months + 3 months BC
- Physics Shutdown Beam commissioning Technical stop



F. Gianotti, Invisible15, Madrid, 26/6/2015

Higgs production vs $\int s$

e⁺e⁻ colliders

e⁺ Ζ W 2Z' w σ(e⁺e⁻ → HX) [fb] Ē $H v_e \overline{v}_e$ 10² H e⁺e⁻ 10 tŦΗ ΗZ 1 Ē $\mathsf{H}\,\mathsf{H}\,\nu_{\mathsf{e}}\overline{\nu}_{\mathsf{e}}$ **10**⁻¹ ннг 10⁻² 1000 2000 3000 0 √s [GeV] e Н γ/Z e⁻ Η

pp colliders

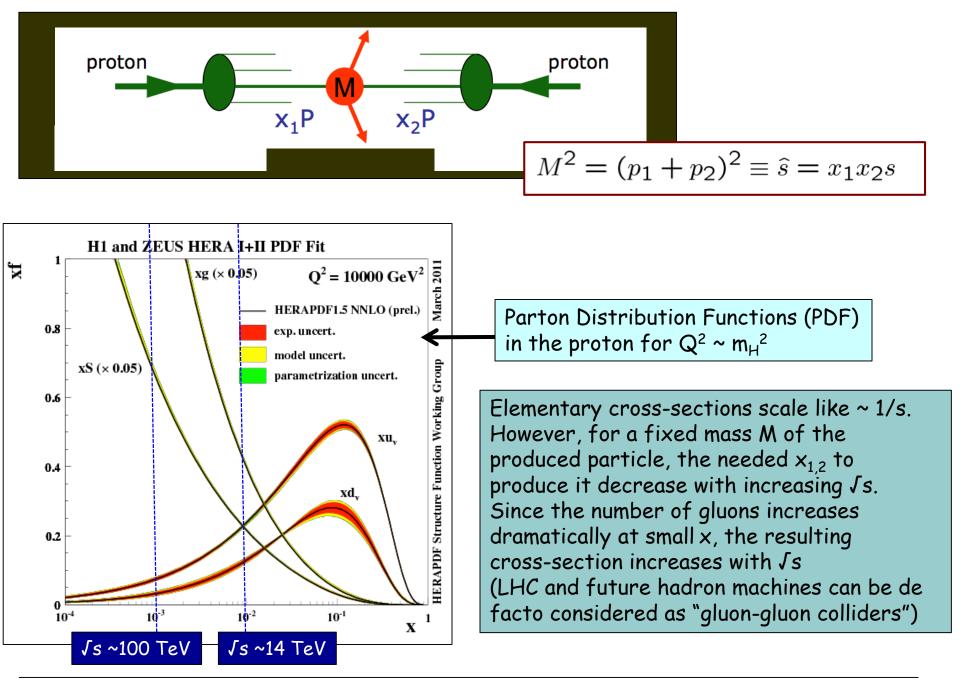


Table 3.1. Summary table of the 250–500 GeV baseline and luminosity and energy upgrade parameters. Also included is a possible 1st stage 250 GeV parameter set (half the original r linac length)

			Baseline	e 500 GeV	Machine	1st Stage	L Upgrade	$E_{ m CM}$ Upgrade	
Centre-of-mass energy	F	GeV	250	350	500	250	500	A 1000	B 1000
6,	$E_{\rm CM}$								
Collision rate	$f_{ m rep}$	Hz	5	5	5	5	5	4	4
Electron linac rate	$f_{ m linac}$	Hz	10	5	5	10	5	4	4
Number of bunches	$n_{ m b}$		1312	1312	1312	1312	2625	2450	245
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0	1.74	1.74
Bunch separation	$\Delta t_{ m b}$	ns	554	554	554	554	366	366	366
Pulse current	$I_{ m beam}$	mA	5.8	5.8	5.8	5.8	8.8	7.6	7.6
Main linac average gradient	G_{a}	$\rm MVm^{-1}$	14.7	21.4	31.5	31.5	31.5	38.2	39.3
Average total beam power	P_{beam}	MW	5.9	7.3	10.5	5.9	21.0	27.2	27.3
Estimated AC power	$P_{ m AC}$	MW	122	121	163	129	204	300	300
RMS bunch length	$\sigma_{\rm z}$	mm	0.3	0.3	0.3	0.3	0.3	0.250	0.22
Electron RMS energy spread	$\Delta p/p$	%	0.190	0.158	0.124	0.190	0.124	0.083	0.08
Positron RMS energy spread	$\Delta p/p$	%	0.152	0.100	0.070	0.152	0.070	0.043	0.04
Electron polarisation	P_{-}	%	80	80	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30	20	20
Horizontal emittance	$\gamma \epsilon_{\mathrm{x}}$	μm	10	10	10	10	10	10	10
Vertical emittance	$\gamma \epsilon_{ m y}$	nm	35	35	35	35	35	30	30
IP horizontal beta function	$\beta^*_{\mathbf{x}}$	mm	13.0	16.0	11.0	13.0	11.0	22.6	11.0
IP vertical beta function	β_{y}^{*}	mm	0.41	0.34	0.48	0.41	0.48	0.25	0.23
IP RMS horizontal beam size	σ^*_{x}	nm	729.0	683.5	474	729	474	481	335
IP RMS veritcal beam size	$\sigma_{\mathrm{y}}^{\star}$	nm	7.7	5.9	5.9	7.7	5.9	2.8	2.7
Luminosity	L	$ imes 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	0.75	1.0	1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		87.1%	77.4%	58.3%	87.1%	58.3%	59.2%	44.5
Average energy loss	$\delta_{\rm BS}$		0.97%	1.9%	4.5%	0.97%	4.5%	5.6%	10.5
Number of pairs per bunch crossing	$N_{ m pairs}$	×10 ³	62.4	93.6	139.0	62.4	139.0	200.5	382.
Total pair energy per bunch crossing	$E_{ m pairs}$	TeV	46.5	115.0	344.1	46.5	344.1	1338.0	3441

.

Number of IPs	2				
Energy (GeV)	120				
Circumference (km)	53.6				
SR loss/turn (GeV)	3.01				
N _c /bunch (10 ¹¹)	3.71				
Bunch number	50				
Beam current (mA)	16.6				
SR power /beam (MW)	50				
$B_0(T)$	0.065				
Bending radius (km)	6.1				
Momentum compaction (10 ⁻⁴)	0.415				
$\beta_{IP} x/y (m)$	0.8/0.0012 (ratio:667)				
Emittance x/y (nm)	6.8/0.02 (ratio:333)				
Transverse σ_{IP} (um)	73.7/0.16 (ratio:470)				
ξ _x /IP	0.104				
$\xi_{\rm v}/{\rm IP}$	0.074				
$\widetilde{\mathbf{V}}_{\mathbf{RF}}(\mathbf{GV})$	6.87				
f _{RF} (MHz)	700				
Nature bunch length σ_z (mm)	2.26				
Bunch length include BS (mm)	2.6				
Nature Energy spread (%)	0.13				
Energy acceptance RF(%)	5.4				
Energy acceptance(%)	2				
n _y	0.22				
BS (%) 0.07					
Life time due to beamstrahlung-Telnov (minute)	2028				
Life time due to simulation (minute)	150				
$L_{max}/IP (10^{34} cm^{-2} s^{-1})$	1.82 30				
F. Gianotti, LHCP 2014, 6/6/2014					

F. Gianotti, LHCP 2014, 6/6/2014

1.0E34	5.0E34	5.0E34	5.0E34	1.2E+35	cm ⁻² s ⁻¹
0.55	0.15	0.35	1.1	0.75	m
0.584	1.12	0.478	0.5	1.0	A
0.01	0.015	0.01	0.01	0.0075	
25	25	25	25 5	25	ns
2808	2808	2808	10600 (8900) 53000 (44500)	5333	
1.15E11	2.2E11	1.0E11	1.0E11	2.0E+11	
3.75	2.5	1.38	2.2	3.3	mm
45	15.4	5.7	19.1/15.9	8.7	hour
111/85	111/85	129/93	153/108	140	mbarn
				0.85	
285	590	185	74	139	mrad
75.5	75.5	75.5	80/75.5	75.5	mm
16.7	7.1	5.2	6.8	8.5	mm
				19.5	m
'	['			43.3	mm
0.392	0.694	0.701	8.4/7.0	5.4	GJ
0.0036	0.0073	0.0962	2.4/2.9	1.5	MW
0.17	0.33	4.35	28.4/44.3	45.8	W/m
0.0067	0.0067	0.201	4.6/5.86	1.49	MeV
	0.55 0.584 0.01 25 2808 1.15E11 3.75 45 111/85 285 75.5 16.7 0.392 0.0036 0.17	0.55 0.15 0.584 1.12 0.01 0.015 25 25 2808 2808 1.15E11 2.2E11 3.75 2.5 45 15.4 111/85 111/85 285 590 75.5 75.5 16.7 7.1 0.392 0.694 0.0036 0.0073 0.17 0.33	0.550.150.350.5841.120.4780.010.0150.012525252808280828081.15E112.2E111.0E113.752.51.384515.45.7111/85111/85129/9328559018575.575.575.516.77.15.20.3920.6940.7010.00360.00730.09620.170.334.35	0.55 0.15 0.35 1.1 0.584 1.12 0.478 0.5 0.01 0.015 0.01 0.01 25 25 25 25 2808 2808 2808 $10600 (8900)$ $53000 (44500)$ $1.15E11$ $2.2E11$ $1.0E11$ $1.0E11$ 3.75 2.5 1.38 2.2 45 15.4 5.7 $19.1/15.9$ $111/85$ $111/85$ $129/93$ $153/108$ 285 590 185 74 75.5 75.5 75.5 $80/75.5$ 16.7 7.1 5.2 6.8 0.392 0.694 0.701 $8.4/7.0$ 0.036 0.0073 0.0962 $2.4/2.9$ 0.17 0.33 4.35 $28.4/44.3$	0.55 0.15 0.35 1.1 0.75 0.584 1.12 0.478 0.5 1.0 0.01 0.015 0.01 0.01 0.0075 25 25 25 25 25 2808 2808 2808 10600 (8900) 53000 (44500) 5333 $1.15E11$ $2.2E11$ $1.0E11$ $1.0E11$ $2.0E+11$ 3.75 2.5 1.38 2.2 3.3 45 15.4 5.7 $19.1/15.9$ 8.7 $111/85$ $111/85$ $129/93$ $153/108$ 140 285 590 185 74 139 75.5 75.5 75.5 $80/75.5$ 75.5 16.7 7.1 5.2 6.8 8.5 16.7 7.1 5.2 6.8 8.5 0.392 0.694 0.701 $8.4/7.0$ 5.4 0.0036 0.0073 0.0962 $2.4/2.9$ 1.5 0.17 0.33 4.35 $28.4/44.3$ 45.8

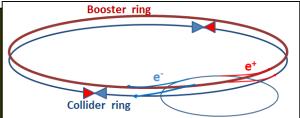
Circular e⁺e⁻ colliders

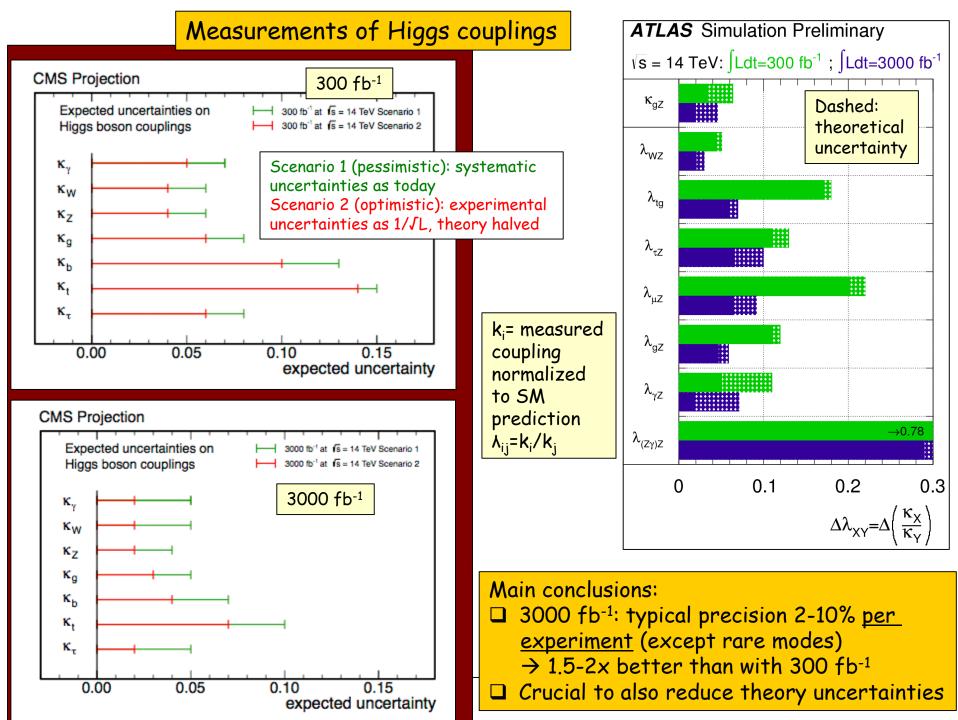
Lepton collider FCC-ee parameters

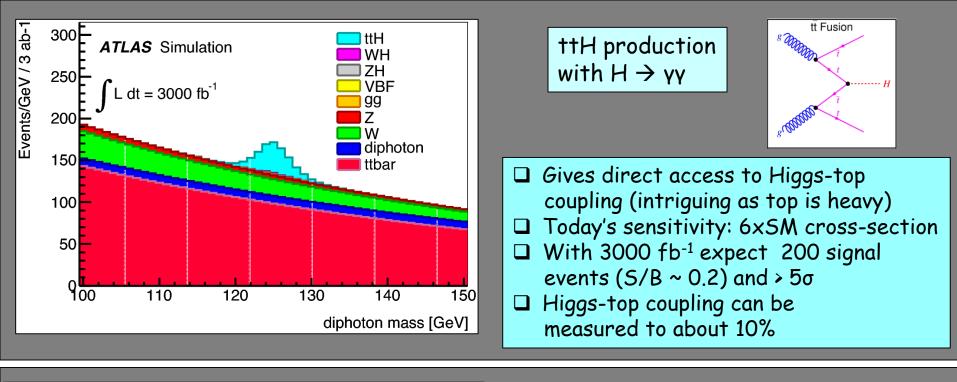
- Design choice: max. synchrotron radiation power set to 50 MW/beam
 - Defines the max. beam current at each energy.
 - 4 Physics working points
 - Optimization at each energy (bunch number & current, emittance, etc).

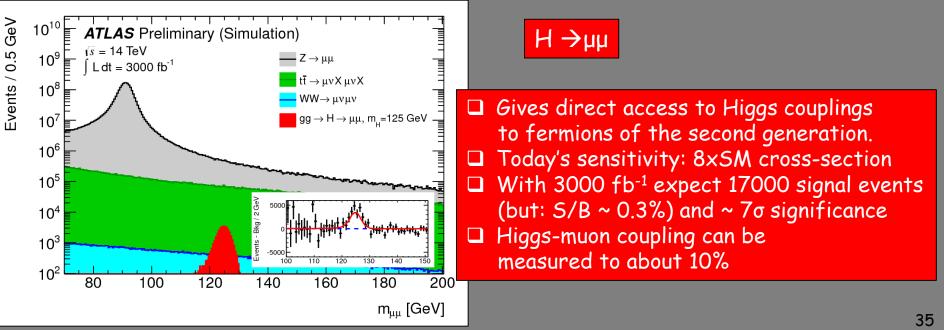
Parameter	Z	WW	н	tt _{bar}	LEP2
E/beam (GeV)	45	80	120	175	104
I (mA)	1450	152	30	6.6	3
Bunches/beam	16700	4490	170	160	4
Bunch popul. [10 ¹¹]	1.8	0.7	3.7	0.86	4.2
L (10 ³⁴ cm ⁻² s ⁻¹)	28.0	12.0	4.5	1.2	0.012

• For H and ttbar working points the beam lifetime of ~few minutes is dominated by Beamstrahlung (momentum acceptance of 2%).

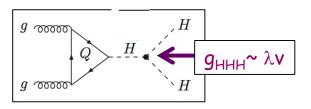

Future Circular Collider Study Michael Benedikt CERN, 26th May 2014


	СерС		FCC-ee	
Ring (km)	53.6		100	
√s (GeV)	240	240	350	90
E loss per turn (GeV)	3	1.7	7.5	0.03
Total RF voltage (GV)	6.9	5.5	11	2.5
Beam current (mA)	16.6	30	6.6	1450
N. of bunches	50 (one ring!)	1360	98	16700
L (10 ³⁴ cm ⁻² s ⁻¹)/IP	1.8	6	1.8	28
e [±] /bunch (10 ¹¹)	3.7	0.46	1.4	1.8
$\sigma_{\rm v}/\sigma_{\rm x}$ at IP (µm)	0.16/74	0.045/22	0.045/45	0.25/121
Interaction Points	2	4	4	4
Lumi lifetime (min)	60	21	15	213
SR power/beam	50 MW		50 MW	

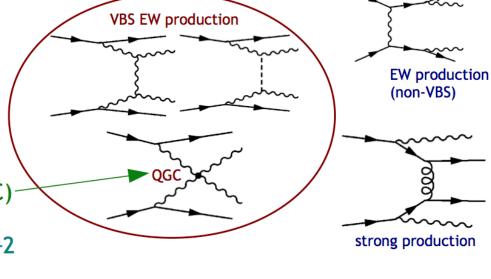

Main challenges:


- \Box FCC ring size
- □ Synchrotron radiation → 100 MW RF system with high efficiency
- Beam polarization for beam energy calibration at Z-pole and WW threshold to <100 keV to measure m_Z, m_W to < MeV at FCC-ee</p>
- \square Machine design with large energy acceptance over full Js span

Note: Super-KEKB is an excellent "prototype", with more stringent requirements on positron rate, momentum acceptance, lifetime, β_v^*



Process	√s = 14 TeV	√s = 33 TeV	√s = 40 TeV	√s = 60 TeV	√s = 80 TeV	√s = 10r TeV	
ggF ^a	50.35 pb	178.3 pb (3.5)	231.9 pb (4.6)	394.4 pb (7.8)	565.1 pb (11.2)	740.3 pb (14.7)	\setminus
VBF ^b	4.40 pb	16.5 pb (3.8)	23.1 pb (5.2)	40.8 pb (9.3)	60.0 pb (13.6)	82.0 pb (18.6)	N
WH ^c	1.63 pb	4.71 pb (2.9)	5.88 pb (3.6)	9.23 pb (5.7)	12.60 pb (7.7)	15.90 pb (9.7)	
ZH ^c	0.904 pb	2.97 pb (3.3)	3.78 pb (4.2)	6.19 pb (6.8)	8.71 pb (9.6)	11.26 pb (12.5)	
ttH ^d	0.623 pb	4.56 pb (7.3)	6.79 pb (11)	15.0 pb (24)	25.5 pb (41)	37.9 pb (61)	
$gg \rightarrow HH^{e}(\lambda=1)$	33.8 fb	207 fb (6.1)	298 fb (8.8)	609 fb (18)	980 fb (29)	1.42 pb (42)	,


Higgs self-	coupling	s diffic	cult to me	asure at	any facili	ty (energ	y is mainl	ly neede	d)
	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC1400	CLIC3000	HE-LHC	VLHC
\sqrt{s} (GeV)	14000	500	500	500/1000	500/1000	1400	3000	33,000	100,000
$\int Ldt (fb^{-1})$	3000	500	1600^{\ddagger}	500/1000	$1600/2500^{\ddagger}$	1500	+2000	3000	3000
λ		83%	46%	21%	13%	21%	10%	20%	8%
HL	-LHC stu	udies no	t complete	ed yet ·	~30% prec	ision expe	cted, but	need 30	00 fb ⁻¹

Vector boson scattering $W^{\pm}W^{\pm} \rightarrow W^{\pm}W^{\pm}$

At high energies, WW \rightarrow WW and ZZ \rightarrow ZZ processes test if the Higgs fully explains electroweak symmetry-breaking: vector boson scattering (VBS) processes

Sensitive to anomalous four-gauge boson interactions (quartic gauge coupling, QGC)

Search for W[±]W[±]jj production in dilepton+2 jet final states, m(jj)>500 GeV

F. Gianotti, I

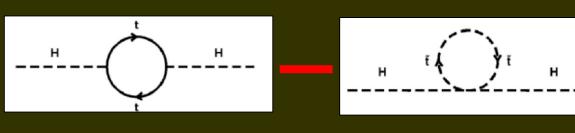
$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \left[rac{a_i}{\Lambda} \mathcal{O}_i^{(5)} + rac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + rac{e_i}{\Lambda^4} \mathcal{O}_i^{(8)} \cdots
ight]$$

Observation of **anomalous quartic gauge coupling** would indicate **new physics in the electroweak symmetry breaking sector!**

Parameter dimen	dimension	nension channel	Λ_{UV} [TeV]	300 fb ⁻¹		3000 fb ⁻¹	
	dimension			5σ	95% CL	5σ	95% CL
$c_{\phi W}/\Lambda^2$	6	ZZ	1.9	34 TeV ⁻²	20 TeV^{-2}	16 TeV ⁻²	9.3 TeV-
f_{S0}/Λ^4	8	$W^{\pm}W^{\pm}$	2.0	10 TeV ⁻⁴	6.8 TeV^{-4}	4.5 TeV^{-4}	0.8 TeV-
f_{T1}/Λ^4	8	WZ	3.7	1.3 TeV^{-4}	0.7 TeV^{-4}	0.6 TeV^{-4}	0.3 TeV-
f_{T8}/Λ^4	8	Ζγγ	12	$0.9 {\rm TeV^{-4}}$	$0.5 {\rm TeV^{-4}}$	0.4 TeV^{-4}	0.2 TeV ⁻
f_{T9}/Λ^4	8	Ζγγ	13	2.0TeV^{-4}	$0.9 {\rm TeV^{-4}}$	0.7 TeV^{-4}	0.3 TeV-
	to th	e sensitiv	vity with 300	10 fb ⁻¹			
			overy exp				0 fb ⁻¹ !
BSM	l contribu	ition at	. IEV Scal	e migne i			
If BS	M discov	ered in	300 fb ⁻¹ be measu	lataset, t	then the	coefficie	nts on t

38

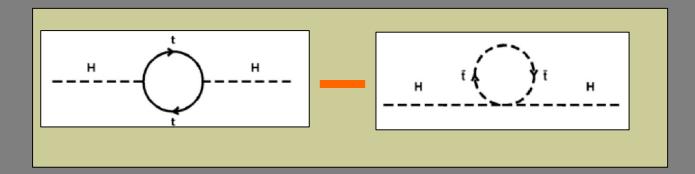
The problem of the stability of the Higgs mass a.k.a "naturalness"

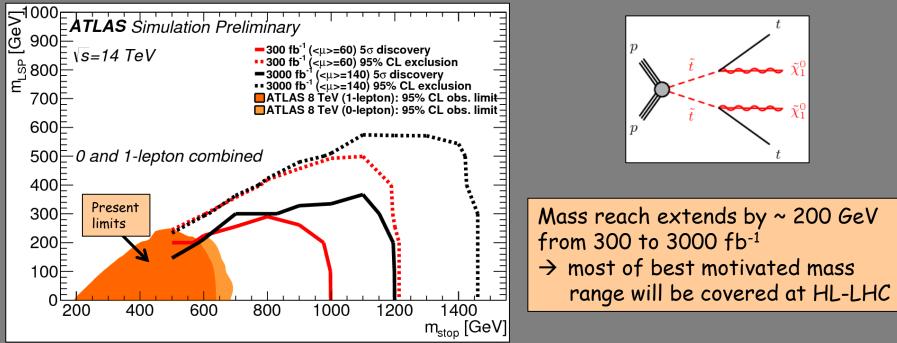

As any other particle (e^{\pm} , ...) in quantum mechanics Higgs mass receives radiative corrections

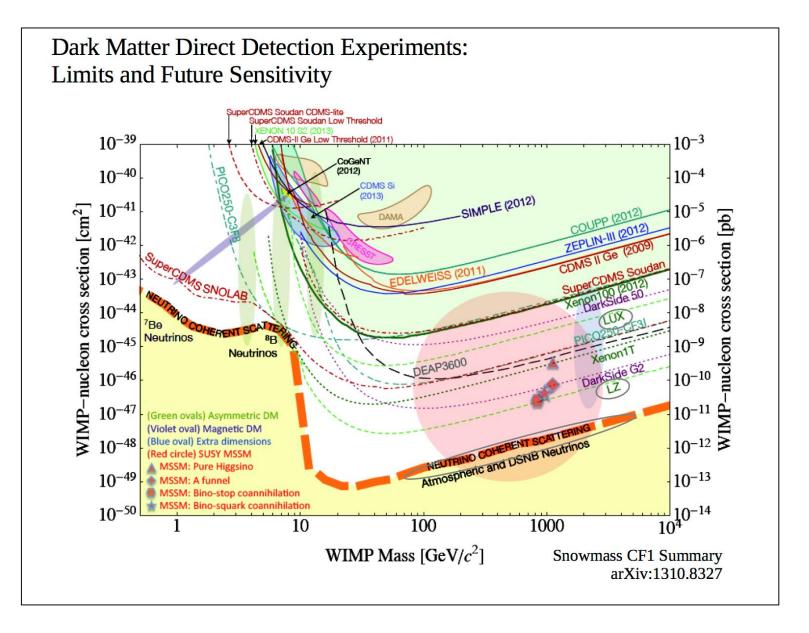
$$M_{H}^{2} = M_{\text{bare}}^{2} + \left(\underbrace{\bigcup_{H \in H}}_{H} \right) + \left(\underbrace{\bigcup_{H \in H}}_{t} \right) + \left(\underbrace{\bigcup_{H \in H}}_{t} \right) + \left(\underbrace{\bigcup_{H \in H}}_{H} \right)$$

Mostly small, except top contribution: ~ $m_t^2 \Lambda^2$ Λ^2 = energy scale up to which the SM is valid (or, equivalently, new physics sets in)

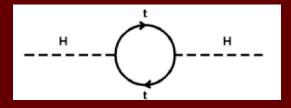
2 solutions


"Naturalness": Higgs mass stabilized by new physics that cancel the divergences.
 E.g. SUSY: the contribution of the supersymmetric partner of the top (stop) gives rise to the same contribution with opposite sign → cancellation

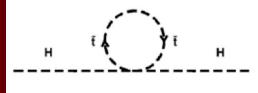

BUT: cancellation only works if stop mass not much larger than top mass → this is one of most compelling motivations for SUSY (or new physics) at TeV scale


2) "Fine tuning": the bare mass cancels the radiative corrections \rightarrow this becomes more and more "acrobatic" the higher the scale Λ up to which SM is valid (w/o new physics)

E.g. $\Lambda = 10 \text{ TeV} \rightarrow M^2 (\text{rad. corr}) = 8265625 \text{ GeV}^2 \rightarrow \text{need fine-tuned } M_{\text{bare}}^2 = 8281250 \text{ GeV}^2$ to get $M_{\text{H}}^2 = (125 \text{ GeV})^2 = 15262 \text{ GeV}^2$ $\Lambda = 10^{19} \text{ GeV} \rightarrow \text{need fine tuning of } M_{\text{bare}}$ to the 33rd digit $\parallel \rightarrow \text{UNNATURAL}$

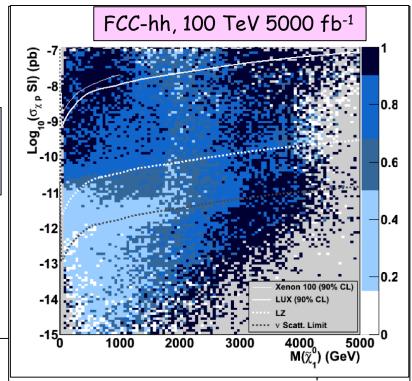


To stabilize the Higgs mass (without too much fine-tuning), the stop should not be much heavier than ~ 1-1.5 TeV (note: the rest of the SUSY spectrum can be heavier)

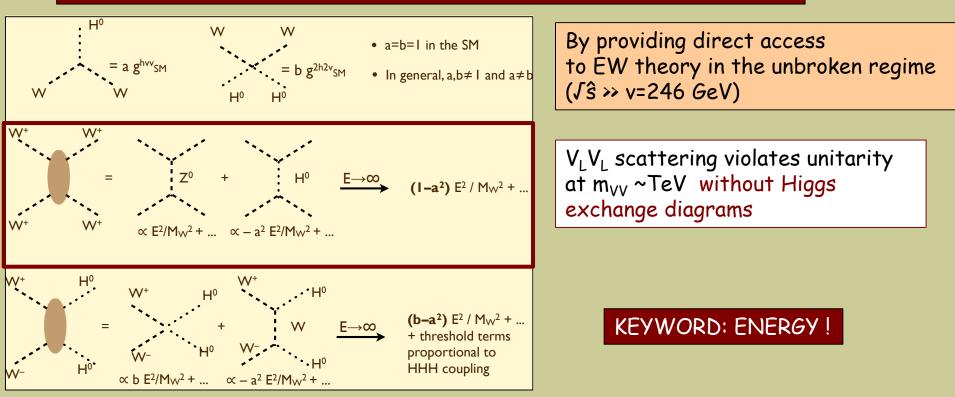


Why is the Higgs so light?

In the SM, corrections to m_H diverge as $\Delta M_H^2 \sim \Lambda^2$ (Λ = E scale up to which SM is valid) "Naturalness" problem Need new physics (close-by, ~TeV scale) to "stabilize" the divergent Higgs mass

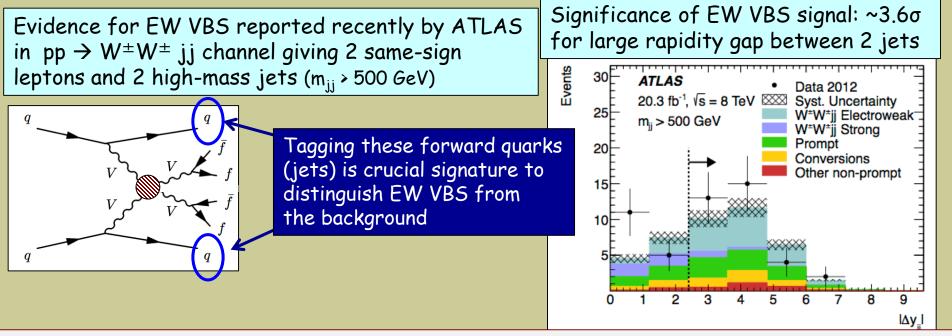

E.g. the SUSY partner of the top (stop) gives rise to same diagram with opposite sign \rightarrow cancellation Searches for stop quarks so far unsuccessful HL-LHC can probe up to 1.5 TeV

Dark Matter searches

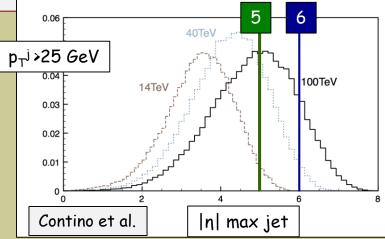

Fraction of minimal SUSY parameter space that can be excluded at 95% CL by present experimental constraints and direct DM searches at pp colliders

Arbey, Battaglia, Mahmoudi

F. Gianotti, Invisible15, Madrid, 26/6/2015



A 100 TeV pp collider would allow a definitive exploration of EWSB


Important to verify that:

- \Box H (125) regularizes the theory \rightarrow a crucial "closure test" of the SM
- □ Or, else: observe deviations in VV production compared to SM expectation → anomalous quartic (VVVV) gauge couplings and/or new heavy resonances → new physics (Note: several models predict SM-like Higgs but different physics at high E)
- □ ILC 1 TeV, 1 ab⁻¹: indirect sensitivity to new resonances up to m~6 TeV (exploit e[±] polarization)
- □ CLIC 3 TeV, 1 ab⁻¹: indirect sensitivity to composite Higgs scale Λ ~30 TeV from VV→ hh
- □ 100 TeV pp: huge cross-sections at high-mass: $\sigma \sim 100$ fb m_{WW}> 3 TeV; $\sigma \sim 1$ fb m_{HH} > 2 TeV
- \rightarrow detailed <u>direct</u> studies

HL-LHC: measure SM EW cross-section to 10%; x2 higher sensitivity to anomalous couplings than LHC@300 fb⁻¹, ~5% precision on parameters if new physics observed at LHC@300 fb⁻¹
 ILC 1 TeV, 1 ab⁻¹: indirect sensitivity to new resonances up to m~6 TeV (exploit e[±] polarization)
 CLIC 3 TeV, 1 ab⁻¹: indirect sensitivity to composite Higgs scale Λ~30 TeV from VV→ hh
 100 TeV pp: huge cross-sections at high-mass: σ ~ 100 fb m_{WW}> 3 TeV; σ ~ 1 fb m_{HH} > 2 TeV
 → detailed direct studies

Maximum jet rapidity vs \sqrt{s} \rightarrow calorimeter coverage over $|\eta| \ge 6$ needed at 100 TeV pp collider (ATLAS, CMS: $|\eta| < 5$) \rightarrow challenging: pile-up, radiation, ... !!

