

CONTENT OF THE LECTURE

- Neutrino oscillations discovery and parameter determination
- Iatest results for "standard" neutrino oscillations
- hints of sterile neutrinos

THE SOLAR PROBLEM

- The sun produce a very intense flux of $v_{\rm e}$
- Several experiments with different techniques measured a clear deficit wrt the theory prediction
 - radiochemical sources
 - Cherenkov
- About 2/3 of v_e are missing!

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 98

ATMOSPHERIC NEUTRINOS ANOMALY

- Atmospheric neutrinos come from the interaction of primary cosmic rays with the atmosphere
- Neutrino comes from pion and muon decay

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\downarrow$$

$$e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

- ratio well known and expected to be
 2:1 but observed ~1
- 1/2 of v_{μ} are missing!

from T. Kajita (Neutrino 2016)

from Kamiokande Paper in 1988 K. Hirata et al, Phys.Lett.B 205 (1988) 416.

<u>Paper conclusion</u>: "We are unable to explain the data as the result of systematic detector effects or uncertainties in the atmospheric neutrino fluxes. Some as-yet-unaccounted-for physics such as neutrino oscillations might explain the data."

NEUTRINO OSCILLATION: THE DISCOVERY

Super-Kamiokande concluded that the observed angle dependent deficit on atmospheric neutrinos gave evidence of neutrino oscillations

NEUTRINO OSCILLATION: THE DISCOVERY

- Final measurement of Solar neutrinos by the SNO experiment (2000): 1 kton of heavy water seen by ~10k PMTs
- Sensitive to CC, ES and NC
 - CC: only 1/3 of expected flux
 - NC : no deficit observed!
- Solar neutrinos emitted by the sun as v_e reach the Earth as mixture of v_e , v_μ and v_τ : Oscillations!
- Deficit explanation: solar v_e energies < 10 MeV: CC for v_{μ} and v_{τ} are forbidden (E < M_{μ/τ})

NOBEL PRIZE

2015 Nobel Prize in Physics to Takaaki Kajita and Arthur B. McDonald for the discovery of neutrino oscillations

Parameters		Experiment	signal
$ \Delta m_{21} ^2 = m^2_2 - m^2_1 $	9 ₁₂	solar and reactor	$P(\nu_e \to \nu_{\mu,\tau})$
$ \Delta m_{32} ^2 = m^2_3 - m^2_2 $	9 ₂₃	atmospheric and accelerator	$P(\nu_{\mu} \rightarrow \nu_{\mu}) \& P(\nu_{\mu} \rightarrow \nu_{\tau})$
	9 ₁₃	reactor and accelerator	$P(\nu_{\mu} \rightarrow \nu_{e}) \& P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e})$
	δ_{CP}	accelerator	$P(\nu_{\mu} \rightarrow \nu_{e})$

THE KNOWNS AND THE UNKNOWNS

$$\theta_{12} = 33.6 \pm 0.8^{\circ}$$
$$\Delta m_{21}^2 = +(7.5 \pm 0.2) \times 10^{-5} \text{eV}^2$$
$$\theta_{23} = (38 - 50)^{\circ} (3\sigma)$$
$$|\Delta m_{32}^2| \approx (2.5 \pm 0.4) \times 10^{-3} \text{eV}^2$$
$$\theta_{13} = 8.4 \pm 0.2^{\circ}$$

from NuFit 2016

SNO , SK, BOREXINO, GALLEX, SAGE..

KamLAND

	Atmospheric para	ameters
<pre></pre>	$P(\nu_{\mu} \to \nu_{\mu})$	Kamiokande, SK, IMB, K2K, MINOS, T2K, NOvA
)	$P(\nu_{\mu} \rightarrow \nu_{\tau})$	(Opera)
}	$P(\bar{\nu}_e \to \bar{\nu}_e)$	Daya-Bay, RENO, Double Chooz
J	$P(\nu_{\mu} \rightarrow \nu_{e})$	T2K, NOvA

Solar parameters

 $P(\nu_e \to \nu_{\mu,\tau})$ S

 $P(\bar{\nu}_e \to \bar{\nu}_e)$

_

 $\delta_{CP} = [0, 2\pi]$

T2K, NOvA

 $\delta_{CP} = [0, 2\pi]$

from NuFit 2016

THE KNOWNS AND THE UNKNOWNS

$$\theta_{12} = 33.6 \pm 0.8^{\circ}$$

 $\Delta m_{21}^2 = +(7.5 \pm 0.2) \times 10^{-5} \text{eV}^2$

Solar parameters $P(\nu_e -$

$$\rightarrow \nu_{\mu,\tau}$$
 SNO , SK, BOREXINO, GALLEX, SAGE..

 $P(\bar{\nu}_e \to \bar{\nu}_e)$ **KamLAND**

Atmospheric parameters $\theta_{23} = (38 - 50)^{\circ}(3\sigma)$ Octant Kamiokande, SK, IMB, $P(\nu_{\mu} \rightarrow \nu_{\mu})$ K2K, MINOS, T2K, NOvÁ $|\Delta m_{32}^2| \approx (2.5 \pm 0.4) \times 10^{-3} \text{eV}^2$ $P(\nu_{\mu} \rightarrow \nu_{\tau})$ (Opera) Mass Hierarchy $P(\bar{\nu}_e \to \bar{\nu}_e)$ Daya-Bay, RENO, Double Chooz $\theta_{13} = 8.4 \pm 0.2^{\circ}$ $P(\nu_{\mu} \rightarrow \nu_{e})$ T2K, NOvA T2K, NOvA CP violation

THE KNOWNS AND THE UNKNOWNS

Accelerator- based experiments

•
$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \left(\cos^{4}\theta_{13}\sin^{2}2\theta_{23} + \sin^{2}2\theta_{13}\sin^{2}\theta_{23}\right)\sin^{2}\Delta m_{31}^{2}\frac{L}{4E}$$

Precision measurement of $2\theta_{m}$ and Δm^{2}_{m} .
• $P(\nu_{\mu} \rightarrow \nu_{e}) \sim \frac{\sin^{2}2\theta_{13}}{2} \times \frac{\sin^{2}\theta_{23}}{2} \times \frac{\sin^{2}(1-x)\Delta}{(1-x)^{2}}$
 $+\alpha \cos \delta \times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \cos \Delta \frac{\sin[x\Delta]}{x} \frac{\sin((1-x)\Delta)}{(1-x)}$
 $+\alpha \cos \delta \times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \cos \Delta \frac{\sin[x\Delta]}{x} \frac{\sin((1-x)\Delta)}{(1-x)}$ matter effects
 $+\mathcal{O}(\alpha^{2})$
M. Freund, Phys.Rev. D64 (2001) 053003
 $\alpha = \left|\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right| \sim \frac{1}{30} \qquad \Delta \equiv \frac{\Delta m_{31}^{2}L}{4E} \qquad x \equiv \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}}$

Reactor- based experiments

•
$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$$

 $- \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32} \right)$

HOW DO WE MEASURE $\delta_{\rm CP}$?

- δ_{CP} can be measured only by accelerator-based
 LBL experiment. Reactor experiments do NOT
 have access to this parameter
- The measurement is (in principle) simple: looking for a different behaviour (shape and normalisation) between neutrino and antineutrino oscillations

- 0, π : no CP violation $P(v_{\mu} \rightarrow v_{e}) = P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$
- $-\pi/2$: enhance P($v_{\mu} \rightarrow v_{e}$) suppress P($\overline{v_{\mu}} \rightarrow \overline{v_{e}}$)
- ► $+\pi/2$: suppress P($v_{\mu} \rightarrow v_{e}$) enhance P($\overline{v_{\mu}} \rightarrow \overline{v_{e}}$)
- Matter effects, if significative, make the measurement more complicate
- δ_{CP} strongly correlated with θ_{13} . δ_{CP} can be extracted using reactor constraints

e.g. if δ_{CP} = :

EFFECT ON OSCILLATIONS MEASUREMENTS

Considering:

- no matter effects
- no CP violation
- maximal mixing (θ_{23} =45°)

EFFECT ON OSCILLATIONS MEASUREMENTS

Considering:

- Matter effect → move measurement wrt diagonal
- CP violation → move the measurement along one ellipse

S. BORDONI (CERN)

EFFECT ON OSCILLATIONS MEASUREMENTS

Considering:

- Matter effect: move measurement wrt diagonal
- CP violation : move the measurement along one ellipse
- Octant : move measurement on the other diagonal

ANALYSIS STRATEGY

- Estimation of the flux is complicated for both accelerator and reactor experiments
- Big uncertainties to take into account (e.g. number of ß-decay from fission products for reactors, hadron production for beams..)
- 2 detectors :
 - Near Detector : estimate the incoming neutrino flux before the oscillation occurs
 - Far Detector : measure the distortions due to oscillations

NB: Depending on where the detector are located, the experiment can be sensible to different parameters

e.g. Reactor experiments :

- if short baseline (~ few km), sensitivity to Δm^2_{atm} and ϑ_{13}
- if long baseline (~100s km) sensitivity to Δm_{sol}^2 and ϑ_{12}

REACTOR EXPERIMENTS

CURRENT REACTOR EXPERIMENTS

2012: not only Higgs boson discovery..

year of reactor experiments: measurement of the last mixing angle ϑ_{13}

CURRENT REACTOR EXPERIMENTS: DAYA-BAY

 First experiment measuring θ₁₃ and world leading

March 2012 : $\theta_{13} \neq 0$ with a significance of 5.2 σ

20

CURRENT REACTOR EXPERIMENTS: DAYA-BAY

CURRENT REACTOR EXPERIMENTS

RENO

presented at Neutrino 2016

Double Chooz

χ² / ndf: 97.5 / 76

SUMMARY OF THE θ_{13} measurements

from Daya-Bay CERN seminar, Feb 2017

ACCELERATOR-BASED EXPERIMENTS

LBL EXPERIMENTS : MINOS / MINOS + 💸

- Long baseline accelerator experiment in US 2003 2016
- baseline ~ 735 km
- on axis, $\langle E_v \rangle \simeq 2 \text{ GeV}$ (MINOS), $\langle E_v \rangle \simeq 6-7 \text{ GeV}$ (MINOS+)
- data in both neutrino and anti-neutrino modes

LBL EXPERIMENTS : T2K J2R

- ▶ LBL experiment in Japan since 2010
- baseline ~300km
- first experiment with off-axis technique. $\langle E_{\nu} \rangle \simeq 0.6 \text{ GeV}$
- data collected in both neutrino and anti-neutrino modes
- Kinematic approach

LBL EXPERIMENTS : T2K J2R

STEFANIA BORDONI (CERN)

LBL EXPERIMENTS : T2K JZR

- Joint neutrino anti-neutrino analysis
- δ_{CP} (radians) • Extraction of constraints on δ_{CP} from v_e appearance results
- Reactor constraints on θ_{13} can be used to resolve the degeneracy with this parameter

arXiv[hep-ex] 1701.00432

-68%CL ($-2\Delta \ln L = 2.3$) -90%CL ($-2\Delta \ln L = 4.61$)

— Normal Ordering

Best-fit PDG 2015

- LBL EXPERIMEN er NOVA
- Long baseline accelerator experiment in US started in 2013
- baseline ~ 810 km

C University of Sussex

- Using off-axis technique. $\langle E_{\nu} \rangle \approx 2 \text{ GeV}$
- calorimetric approach
- results on only neutrino mode so far. Anti-neutrino runs just started!

11M liters of scintillator

instrumented with

 λ -shifting fiber and APDs

14-kton, fine-grained, low-Z, highly-active tracking calorimeter → 344,000 channels

Near detector: 0.3-kton version of the same \rightarrow 20,000 channels

US University of Sussex

US University of Sussex

US University of Sussex

STEFANIA BORDONI (CERN)

78 events observed at FD 430 +/- 30 expected w/ no oscillation

Best Fit (in NH): $\left|\Delta m_{32}^2\right| = 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

Maximal mixing excluded at 2.5σ

US University of Sussex US University of Sussex

STEFANIA BORDONI (CERN)

33 events observed 8.2 +/- 0.8 expected background v_e appearance signal @ > 8 σ

SOME COMPARISONS

Latest results of NOvA and IceCube

WHAT'S NEXT?

FUTURE REACTOR EXPERIMENT ?

- ▶ JUNO: New reactor experiment in China: anti- v_e from Daya Bay power plant
- > 20 kton of liquid scintillator with wide physics program
- MH determination towards oscillation interference
 - big challenge in calorimetry! Need energy resolution better than 3% ($\delta m^2 / \Delta m^2 \sim 3\%$)
- Data taking foreseen for > 2020

FUTURE LONG BASELINE EXPERIMENTS DUNE HYPE

- 4 modules Liquid Ar-TPC ~10kton each
- SURF, Homestake mine (US) ~2400mwe
- On-axis beam from Fermilab (1.2-2.4 MW)
- baseline ~1300km
- <E_v> ~3GeV

HYPER-KAMIOKANDE

- 2 water Cherenkov of ~260 ton each
- Tochibora, near Kamioka (Japan),~1750mwe
- Off-axis beam from Tokai (1.3 MW)
- baseline ~300km (1100km if T2HKK)

FUTURE LONG BASELINE EXPERIMENT DUNE

HYPER-KAMIOKANDE

HOW MANY NEUTRINOS?

3 FAMILIES OR MORE?

- LEP measurements of the invisible Z⁰ width are consistent with 3 families of light neutrinos
- If other neutrinos exist, they should be "sterile" : not coupling with the Z boson
- The only way to detect sterile neutrinos is towards the possible missing to active neutrinos

THE EARLY HISTORY: ν_{e} Appearance at 1m/MeV

LSND (1993 -1998) baseline 30 m (L/E ~ m/MeV)

• excess in the anti- $v_{\mu} \rightarrow$ anti- v_{e} compatible with $\Delta m^{2} \simeq 0.2 \text{ eV}^{2}$

KARMEN (1993 - 1998) baseline 18 m (L/E ~ m/MeV)

- very similar experiment to LSND
- no excess in the anti- $v_{\mu} \rightarrow$ anti- v_{e}

Bugey (80's-90's) baseline 15, 40 and 95 m

- reactor experiment
- ▶ no excess in the anti- v_e → anti- v_e

STERILE NEUTRINOS

- > The LSND anomaly (i.e. possible short baseline oscillations) suggest a third independent $\Delta m^2 \sim 1 \; eV^2$
- > This might be explained by introducing 4th neutrino but it should be *sterile*
 - not interaction via weak force or too massive for the Z to decay to (not visible at LEP)
 - mixing with the active neutrinos
 - large mass splitting (Δm^2) ~ 1 eV²

how many sterile? 1, 2 N ?

- Different models exist to introduce sterile neutrinos : 3+1, 1+3, 3+2, 1+3+1..
- focussing here on the simplest model: 3+1

STERILE NEUTRINOS

- Considering the 3+1 model. Because of the large mass splitting (1eV²), the other neutrino masses appear degenerate
 - $\Delta m_{41}^2 \approx \Delta m_{43}^2 \approx \Delta m_{24}^2$

LBL (usual PMNS matrix)

courtesy of C. Giunti

approximation to 2 neutrino flavour-mixing

SBL

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{51} & U_{52} & U_{53} & U_{54} \\ U_{51} & U_{52} & U_{54} & U_{54} & U_{54} & U_{54} \\ U_{51} & U_{52} & U_{54} & U_{5$$

42

$\nu_{e} \text{ APPEARANCE AT 1m/MeV}$

MiniBooNE (2002 -2012) baseline 541 m : L/E ~m/MeV

- designed to address the LSND anomaly
- excess in both $v_{\mu} \rightarrow v_{e}$ and anti- $v_{\mu} \rightarrow$ anti- v_{e} compatible to the LSND results
- MiniBooNE compatibility is marginal and other experiments exclude large part of LSND region.

Not conclusive measurements!

$\nu_e \text{ DISAPPEARANCE AT 1m/MeV}$

- Reactor neutrino fluxes have been recalculated in 2011
- With the new flux almost all short base reaction have deficits! the so called: reactor anomaly

ν_{e} DISAPPEARANCE AT >1m/MeV

 GALLEX and SAGE experiment (solar neutrino experiments) using radioactive sources ⁵¹Cr and ³⁷Ar for calibration purpose

$$e^{-} + {}^{51}\text{Cr} \rightarrow {}^{51}\text{V} + \nu_e ,$$
$$e^{-} + {}^{37}\text{Ar} \rightarrow {}^{37}\text{Cl} + \nu_e ,$$

detection technique as for solar neutrinos

 $v_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

Number of measured events about 2.9σ smaller than expected R= 0.84 ± 0.05

$\nu_{e} \text{ DISAPPEARANCE AT 1m/MeV}$

But other experiments did NOT observe any anomaly..

PRD 91, 051102(R) (2015)

SHORT SUMMARY

Some short baseline experiments reported

- hints in v_e ($\overline{v_e}$) appearance
- hints in $\overline{v_{\rm e}}$ disappearance

Appearance signal require both v_e and v_μ disappearance!

Appearance signal is quadratically suppressed

what about v_{μ} disappearance ?

SHORT SUMMARY

No anomaly observed in $v_{\mu}^{(-)}$ disappearance channel so far..

SOME LATEST RESULTS

WHAT'S NEXT ?

@ accelerator experiments

- Short Baseline Program (SBND) at the Booster Beam at Fermilab
- 3 LAr detector on the same beam line at 3 different distances: definitive test of the LSND anomaly
- Complementary measurements on SBL muon disappearance

WHAT'S NEXT ?

@ reactor experiments

- Very short baseline reactor experiment (5 and 20 m)
- detection based on energy spectrum distortion as a function of the distance
 - extended and (highly) segmented detector to measure relative distortion among cells of the same detector
 - independent from reactor flux estimations
 - challenging experiment for bkg control (μ , n, γ) because on surface

SHORT BASELINE REACTOR EXPERIMENT

from N.Bowden (Neutrino 2016)

Experiment		Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)		3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)		2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	N	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)		100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)		85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)		72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)		72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)		57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

CONCLUSIONS

- breakthrough in neutrino physics with the oscillation discovery
- Impressive knowledge acquired in the last 20 years of the oscillation mechanism and the parameter measurement
- New generation of experiments will continue to improve our understanding

- Several anomalies have been reported to the standard 3-neutrino mixing
- Definitive measurements expected in the close future

THANKS!