UNIVERSITY OF BERGEN

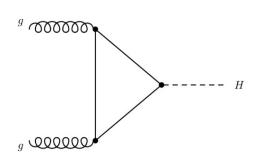
MEASUREMENT OF CROSS SECTIONS AND COUPLINGS OF THE HIGGS BOSON USING THE ATLAS DETECTOR

Overview

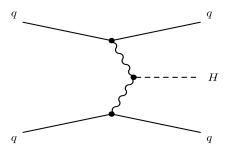
- Introduction •
- Higgs production modes and decays
- Extracting signal strengths, μ , and coupling modifiers, κ .
- Analysis framework and published run-1 results - EUR Phys J C76 (2016) 6 and ATLAS+CMS combination JHEP08(2016)045
- Preliminary ATLAS run-2 results with 36.1 fb⁻¹
 - Results in 4I, $\mu\mu$ final states
 - + yy and 4I+yy combination 'hot off the press'
- Summary

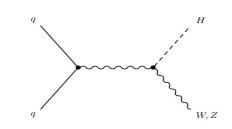
INTRODUCTION

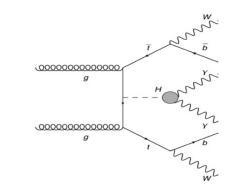
- Finding the Higgs boson is by far the most important discovery within particle physics during recent years
- Following discovery it is important to measure the properties of the Higgs boson to verify the SM and look for deviations that could present hints to new physics
- LHC: Access to a large number of production and decay modes (depending on luminosity)



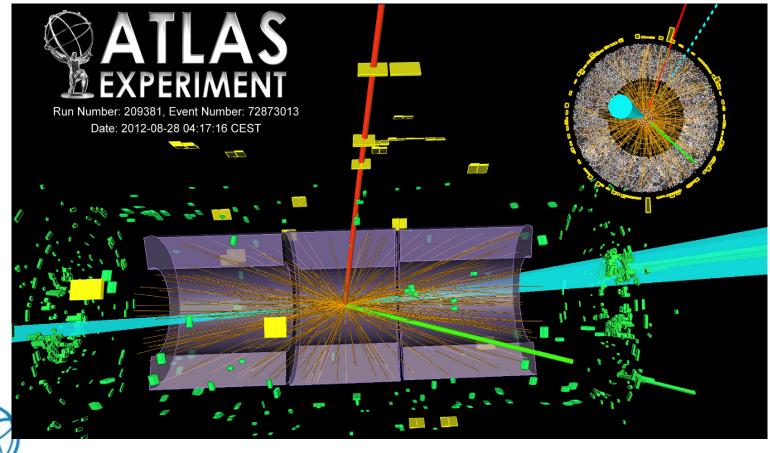
Higgs production channels


Gluon-gluon fusion
 Vector boson fusion


• V-H


4

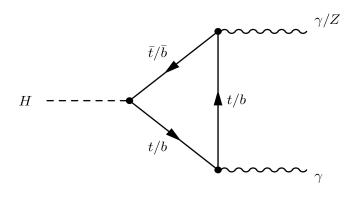
• ttH

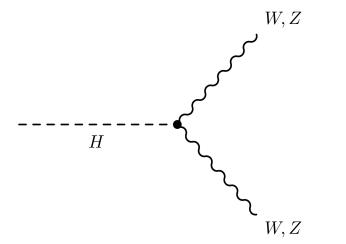


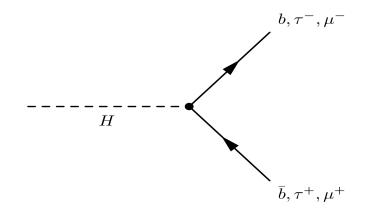
Bjarne Stugu IHEP 2017 July 7th

Production mode classification:

Below a Higgs to tau-tau candidate produced through Vector Boson Fusion


- Two forwards jets
- Higgs candidate is distinctly more transverse in VBF than in ggF





Bjarne Stugu IHEP 2017 July 7th

Higgs decay channels

A large number of combinations of production and decay modes

Bjarne Stugu IHEP 2017 July 7th

Fiducial cuts for particle identification Requirements in H \rightarrow 4l and H $\rightarrow\gamma\gamma$ analyses (run2)

• Muons:

 $- \left| \eta \right| < 2.7$; $p_{_{T}} \!\!> 5~GeV$

• Electrons:

 $- |\eta| < 2.47$; $p_T > 7$ GeV

- Jets (for production mode tagging): $- |\eta| < 4.4$; $p_T > 30$ GeV
- Photons:

- $|\eta| < 2.37$ (with 1.37 $|\eta| <$ 1.52 excluded) ; $E_T^{>} 25~GeV$

 $\eta = -\ln(\tan(\theta/2))$

Measurements in single decay channels

• We define *signal strengths* relative to the SM predictions: μ

$$\mu_i^f = \frac{\sigma_i \times BR_f}{(\sigma_i \times BR_f)_{SM}} \equiv \mu_i \times \mu_f, \text{ with } \mu_i = \frac{\sigma_i}{(\sigma_i)_{SM}} \text{ and } \mu_f = \frac{BR_f}{(BR_f)_{SM}}$$

Measurements in single decay channels

• We define *signal strengths* relative to the SM prediction: μ

$$\mu_i^f = \frac{\sigma_i \times BR_f}{(\sigma_i \times BR_f)_{SM}} \equiv \mu_i \times \mu_f, \text{ with } \mu_i = \frac{\sigma_i}{(\sigma_i)_{SM}} \text{ and } \mu_f = \frac{BR_f}{(BR_f)_{SM}}$$

Always in combination

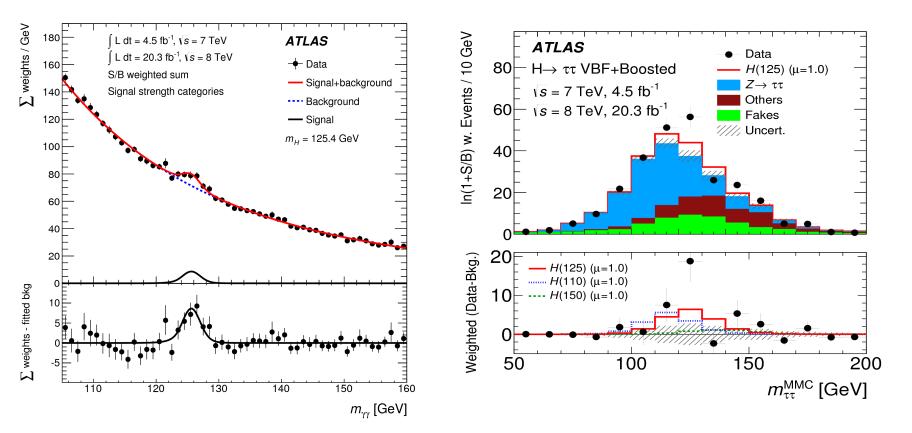
Measurements in single decay channels

• We define *signal strengths* relative to the SM prediction: μ

$$\mu_i^f = \frac{\sigma_i \times BR_f}{(\sigma_i \times BR_f)_{SM}} \equiv \mu_i \times \mu_f, \text{ with } \mu_i = \frac{\sigma_i}{(\sigma_i)_{SM}} \text{ and } \mu_f = \frac{BR_f}{(BR_f)_{SM}}$$

Always in combination

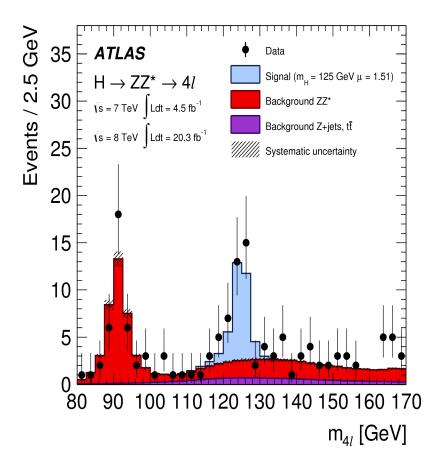
• Real life of experimental event selections:

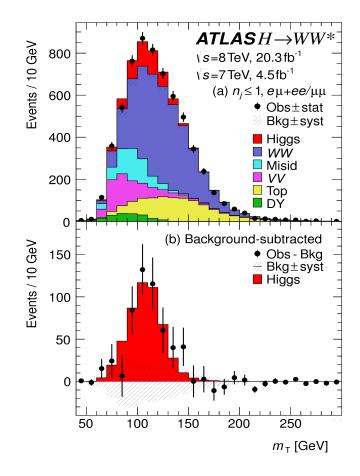

$$n_{s}^{c} = \sum_{i} \sum_{f} \mu_{i}(\sigma_{i})_{SM} \times \mu_{f}(BR_{f})_{SM} \times A_{if}^{c} \times \varepsilon_{if}^{c} \times \mathcal{L}^{c}$$

Events are divided into *categories*
with significant cross-talk

Bjarne Stugu IHEP 2017 July 7th

Input data 7+8 TeV , $\gamma\gamma$ and $\tau\tau$





Bjarne Stugu IHEP 2017 July 7th

Input data 7+8 TeV (VB couplings)

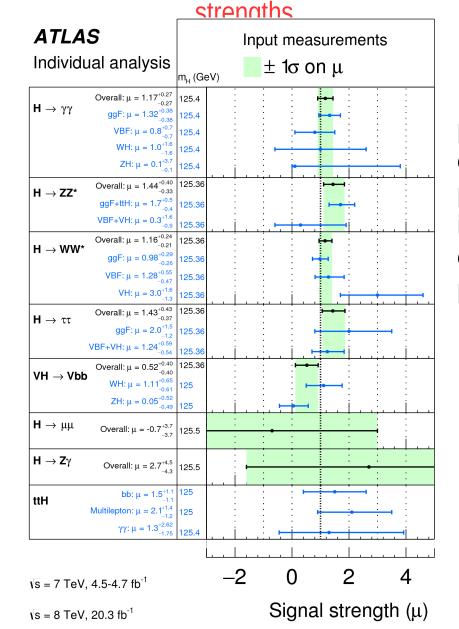
Theoretical production and decay rates used in the ATLAS run-1 study (m_{Higgs}= 125.36 GeV)

Production	Cross section [pb]			Decay channel	Branching ratio [%]
process	$\sqrt{s} = 7 \mathrm{TeV}$	$\sqrt{s} = 8 \text{ TeV}$	-	$H \to b\bar{b}$	57.1 ± 1.9
ggF	15.0 ± 1.6	19.2 ± 2.0		$H \to WW^*$	22.0 ± 0.9
VBF	1.22 ± 0.03	1.57 ± 0.04		$H \to gg$	8.53 ± 0.85
WH	0.573 ± 0.016	0.698 ± 0.018		$H \to \tau \tau$	6.26 ± 0.35
ZH	0.332 ± 0.013	0.412 ± 0.013		$H \to c\bar{c}$	2.88 ± 0.35
bbH	0.155 ± 0.021	0.202 ± 0.028		$H \to ZZ^*$	2.73 ± 0.11
ttH	0.086 ± 0.009	0.128 ± 0.014		$H \to \gamma \gamma$	0.228 ± 0.011
tH	0.012 ± 0.001	0.018 ± 0.001		$H \to Z\gamma$	0.157 ± 0.014
Total	17.4 ± 1.6	22.3 ± 2.0		$H \to \mu \mu$	0.022 ± 0.001

S Heinemeyer et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties (2013),

arXiv:1307.1347 [hep-ph]

The Higgs working group


(except tH cross-section, from Alwall et al: JHEP 1407 (2014) 079)

Bjarne Stugu IHEP 2017 July 7th

The individual measurements to be reorganised to find production mode

Each final state is produced in the different production modes, in analysis dependent proportions

BER

14

uib.no

Parameter estimation scheme

 Must take the production contributions of the different final state analyses and estimate overall cross-sections in the different modes

$$\Lambda(\alpha) = \frac{L(\alpha, \hat{\hat{\theta}}(\alpha))}{L(\hat{\alpha}, \hat{\theta})}.$$
G. Cowan et al.
Eur. Phys. J. C71 (2011) 1554

Build a profile likelihood ratio in order to construct confidence intervals

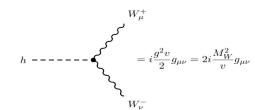
- α is the vector of parameters of interest: (μ_i ..., κ_i ...).
- $\theta(\alpha)$ are nuisance parameters
- Denominator is most likely estimate

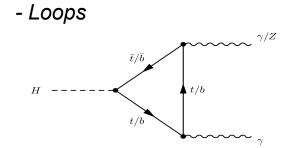
Scan to get the confindence intervals of parameters of interest

Combinaton result: Strengths of the different production modes

Cross-sections for Higgs production at 7 and 8 TeV

 $\sigma_H(7 \text{ TeV}) = 22.1^{+7.4}_{-6.0} \text{ pb} = 22.1^{+6.7}_{-5.3} (\text{stat.})^{+2.7}_{-2.3} (\text{syst.})^{+1.9}_{-1.4} (\text{theo.}) \text{ pb, and}$


 $\sigma_H(8 \text{ TeV}) = 27.7 \pm 3.7 \text{ pb} = 27.7 \pm 3.0 \text{ (stat.)}^{+2.0}_{-1.7} \text{ (syst.)}^{+1.2}_{-0.9} \text{ (theo.) pb},$


A little higher than than the theoretical predictions quoted (17.4±1.6 pb and 22.3 ±2.0 pb). However: Newest calculations of the Higgs WG predict 10% larger ggF contributions to the cross-section (volume 4 of handbook)

Higgs couplings

- The Higgs couples to mass
 - Fermionic e $h = -i\frac{y_e}{\sqrt{2}} = -i\frac{m_e}{v}$
 - Two gauge bosons:

The 'higgs working group' has proposed the 'kappa framework' for experimental tests

Coupling strengths: The '\k' framework developed by the Higgs working group to study deviations from the SM

- Individual coupling modifiers: κ tied to a specific particle type
 - A given production mode is identified in several final states
 - Can define 'effective scale factors', κ , that should be equal to unity if the cross-sections agree with the SM

$$\sigma(i \to H \to f) = \frac{\sigma_i(\kappa_j) \cdot \Gamma_f(\kappa_j)}{\Gamma_H(\kappa_j)}$$

$$\Gamma_H(\kappa_j) = \kappa_H^2(\kappa_j) \cdot \Gamma_H^{\rm SM}$$

• 'Zero width' approximation

Parametrisations of couplings

				/
Production	Loops	Interference	Expressio	on in fundamental coupling-strength scale factors
σ(ggF)	\checkmark	b-t	$\kappa_q^2 \sim$	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	-	-	~	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-	~	κ_W^2
$\sigma(q\bar{q} \rightarrow ZH)$	-	-		κ_z^2
$\sigma(qq \rightarrow ZH)$	\checkmark	Z-t	$\kappa_{aa7H}^2 \sim$	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(bbH)$	-	-		κ_b^2
$\sigma(ttH)$	-	_	\sim	κ_t^D
$\sigma(gb \to WtH)$	-	W-t		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq')$	-	W-t		$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
Partial decay width				
$\Gamma_{b\bar{b}}$	-	-	~	κ_b^2
Γ_{WW}	-	-	~	κ_W^2
Γ_{ZZ}	-	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	κ_z^2
$\Gamma_{ au au}$	-	-	\sim	κ_{τ}^2
$\Gamma_{\mu\mu}$	-	-	~	$\dot{\kappa}_{\mu}^2$
$\Gamma_{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma_{Z\gamma}$	\checkmark	W-t	$\kappa_{Z\gamma}^2 \sim$	$1.12 \cdot \kappa_W^2 + 0.00035 \cdot \kappa_t^2 - 0.12 \cdot \kappa_W \kappa_t$
Total decay width			/	
Γ_H	\checkmark	W - t $b - t$	$\kappa_{H}^{2} \sim$	$\begin{array}{c} 0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 + \\ 0.06 \cdot \kappa_\tau^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 + \\ 0.0023 \cdot \kappa_\gamma^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 + 0.00022 \cdot \kappa_\mu^2 \end{array}$

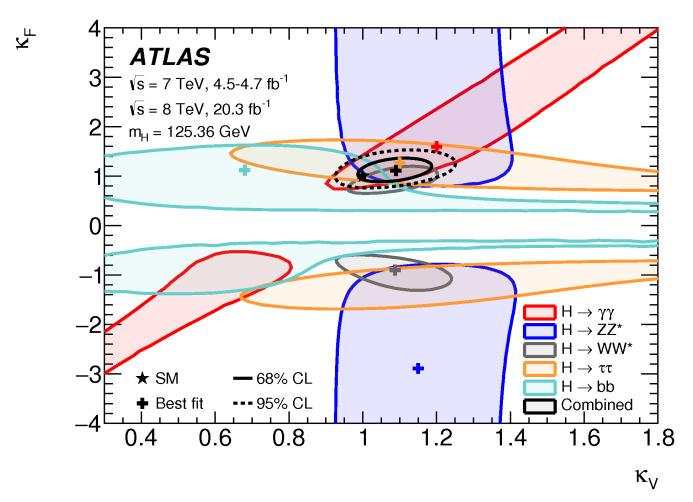
^g 000000

g 20000

H

Fermion vs Vector Boson coupling strength

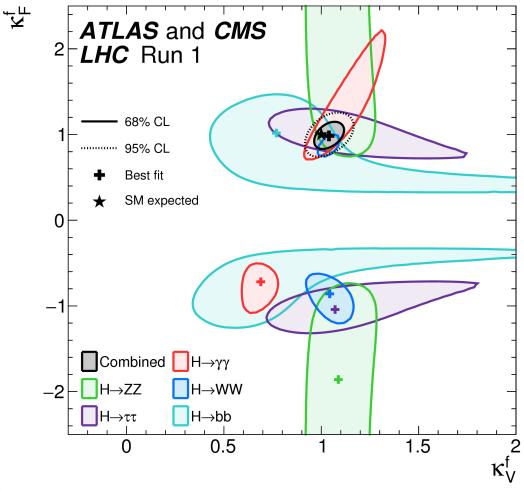
• Assume $\kappa_V = \kappa_W = \kappa_Z$


$$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_g = \kappa_\mu.$$

- and only SM couplings
- Run1 result

$$\kappa_V = 1.09 \pm 0.07 \begin{bmatrix} +0.05 \\ -0.05 \end{bmatrix} (\text{stat.}) \begin{bmatrix} +0.03 \\ -0.03 \end{bmatrix} (\text{syst.}) \begin{bmatrix} +0.04 \\ -0.03 \end{bmatrix} (\text{theo.}) \\ \kappa_F = 1.11 \pm 0.16 \begin{bmatrix} +0.12 \\ -0.11 \end{bmatrix} (\text{stat.}) \begin{bmatrix} +0.10 \\ -0.09 \end{bmatrix} (\text{syst.}) \begin{bmatrix} +0.06 \\ -0.05 \end{bmatrix} (\text{theo.})$$

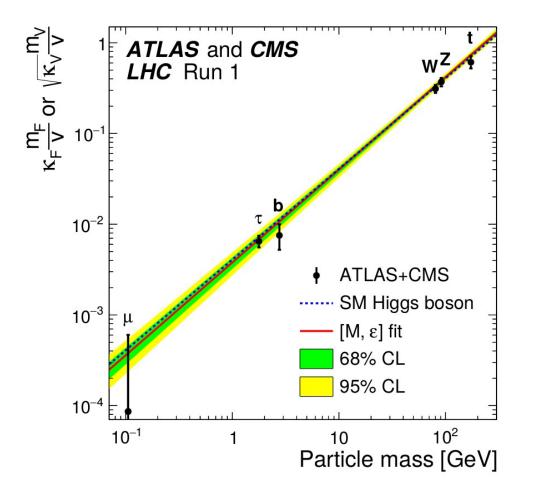
Result visualised



ATLAS and CMS combined Run1 measurements

Note:

H \rightarrow ZZ,WW constrains κ_v H $\rightarrow \tau\tau$ constrains κ_F Sensitivity to sign of κ_F through Wt interference


JHEP08(2016)045

Bjarne Stugu IHEP 2017 July 7th

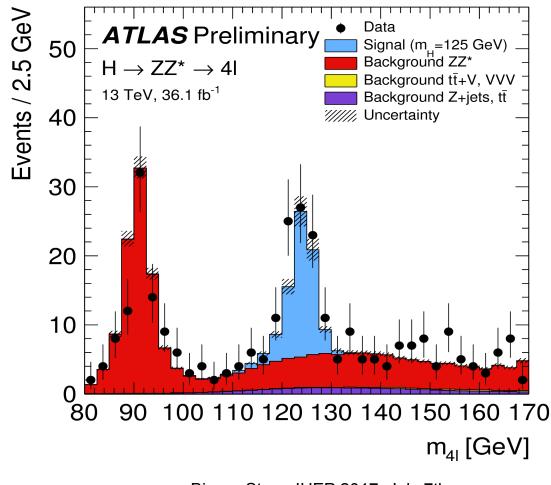
Summarizing RUN1 couplings vs mass

Bjarne Stugu IHEP 2017 July 7th

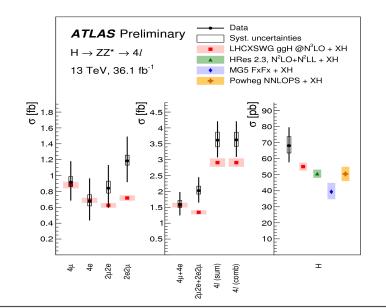
A variety of scenarios are probed

- Allow invisible or undetected contributions
- No assumtions on total width
- Compare up-type and down-type fermions
- Compare W to Z coupling
- Quark-lepton symmetry
- BSM contributions
- All consistent with SM

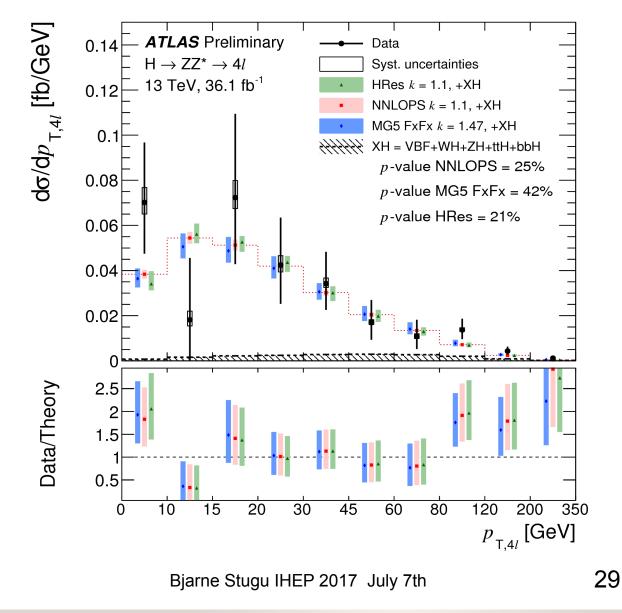
RUN-II (13 TeV) updates


- Preliminary results are available with 36.1/fb for
 - $-H \rightarrow 4$ leptons
 - H $\rightarrow \gamma \gamma$
 - $H \rightarrow \mu\mu$ (limit, published)
- ...and more is coming

The Higgs to four leptons signal at 13 TeV


• $H \rightarrow ZZ^* \rightarrow 4l$ (ATL-CONF-2017-032)

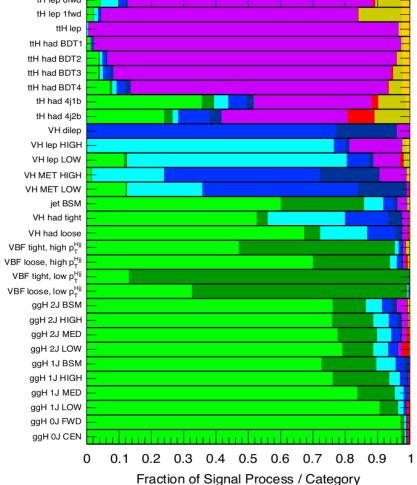
Fiducial and total cross-sections at 13TeV from $H \rightarrow 41$



Summed contributions, or *combined* using SM BR-fractions of the Z

Cross section	Data $(\pm (stat) \pm (sys))$	LHCXSWG prediction	p-value [%]
$\sigma_{4\mu}$ [fb]	$0.92 \stackrel{+0.25}{_{-0.23}} \stackrel{+0.07}{_{-0.05}}$	0.880 ± 0.039	88
σ_{4e} [fb]	$0.67 {}^{+0.28}_{-0.23} {}^{+0.08}_{-0.06}$	0.688 ± 0.031	96
$\sigma_{2\mu 2e}$ [fb]	$0.84 \stackrel{+0.28}{_{-0.24}} \stackrel{+0.09}{_{-0.06}}$	0.625 ± 0.028	39
$\sigma_{2e2\mu}$ [fb]	$1.18 \stackrel{+0.30}{_{-0.26}} \stackrel{+0.07}{_{-0.05}}$	0.717 ± 0.032	7
$\sigma_{4\mu+4e}$ [fb]	$1.59 \ {}^{+0.37}_{-0.33} \ {}^{+0.12}_{-0.10}$	1.57 ± 0.07	65
$\sigma_{2\mu 2e+2e2\mu}$ [fb]	$2.02 {}^{+0.40}_{-0.36} {}^{+0.14}_{-0.11}$	1.34 ± 0.06	6
σ_{sum} [fb]	$3.61 {}^{+0.54}_{-0.50} {}^{+0.26}_{-0.21}$	2.91 ± 0.13	19
σ_{comb} [fb]	$3.62 {}^{+0.53}_{-0.50} {}^{+0.25}_{-0.20}$	2.91 ± 0.13	18
σ_{tot} [pb]	$69 {}^{+10}_{-9} \pm 5$	55.6 ± 2.5	19

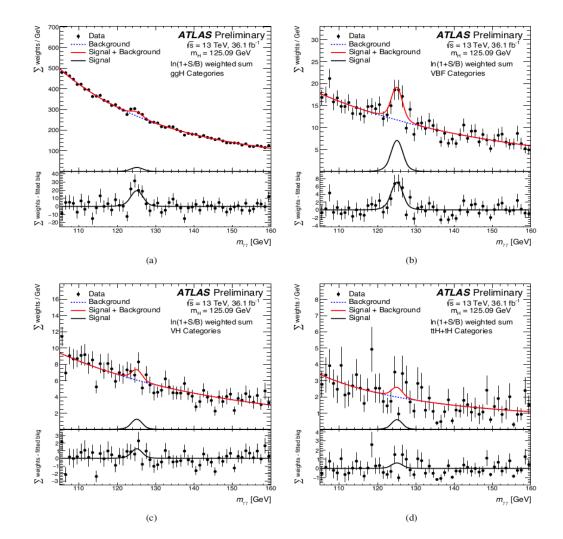
Also Higgs Pt distribution in 4 lepton final state



Details of event classification, Run2 H $\rightarrow\gamma\gamma$

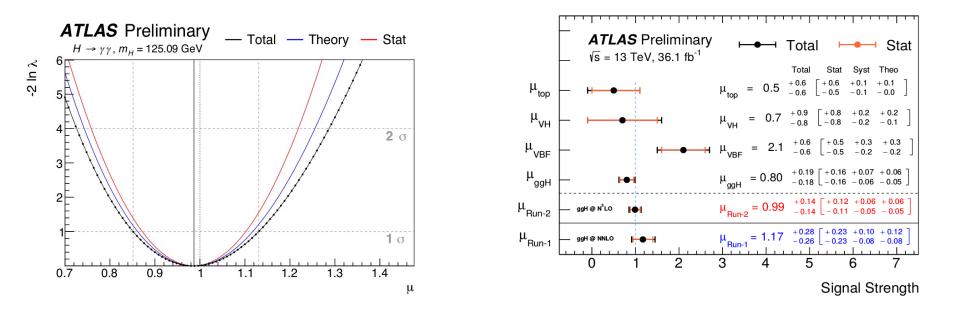
ggH 🚺 VBF 🔤 WH 🔤 ZH 🔤 ggZH 🔤 ttH 🔤 bbH 🔤 tHqb 🔤 tHW

ATLAS Preliminary $H \rightarrow \gamma \gamma$, $m_{H} = 125.09$ GeV


Events are classified according to their assumed production mode and other discriminants. The production mode content in each class is subsequently estimated

Bjarne Stugu IHEP 2017 July 7th

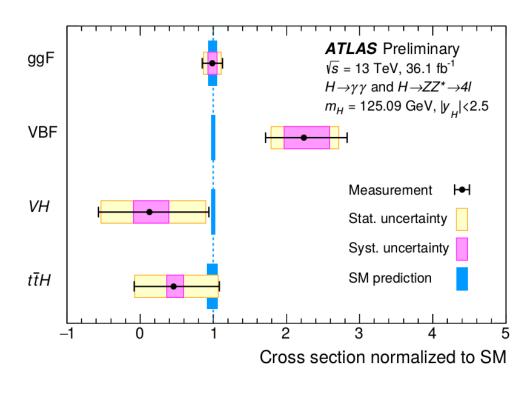
The Run-2 H $\rightarrow\gamma\gamma$ signal in different categories



Bjarne Stugu IHEP 2017 July 7th

Higgs signal strengths at 13 TeV using the γγ final state

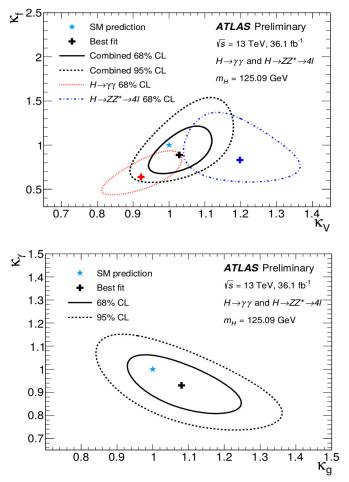
 $\mu = 0.99^{+0.14}_{-0.13} = 0.99^{+0.12}_{-0.11}$ (stat.) $^{+0.05}_{-0.04}$ (exp.) $^{+0.07}_{-0.06}$ (theory)



Bjarne Stugu IHEP 2017 July 7th

Combined 4l and $\gamma\gamma$ signal strengths at 13 TeV

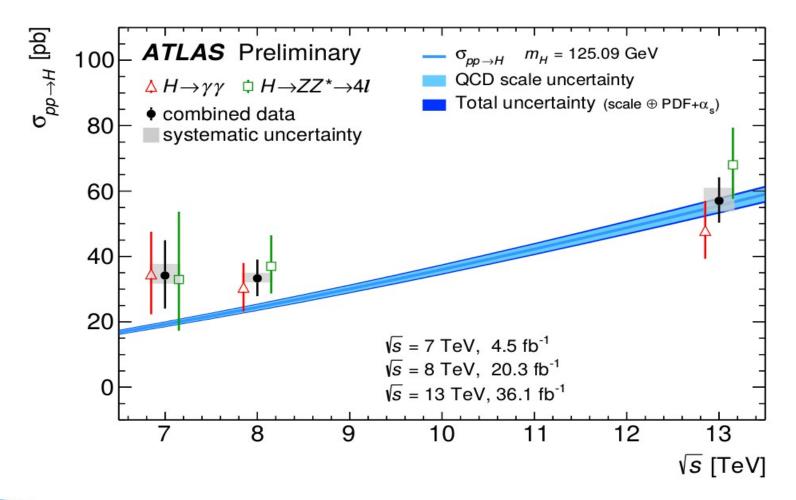
$\mu = 1.09 \pm 0.12 = 1.09 \pm 0.09$ (stat.) $^{+0.06}_{-0.05}$ (syst.) $^{+0.06}_{-0.05}$ (th.)


Couplings at 13 TeV from yy and 41 combination

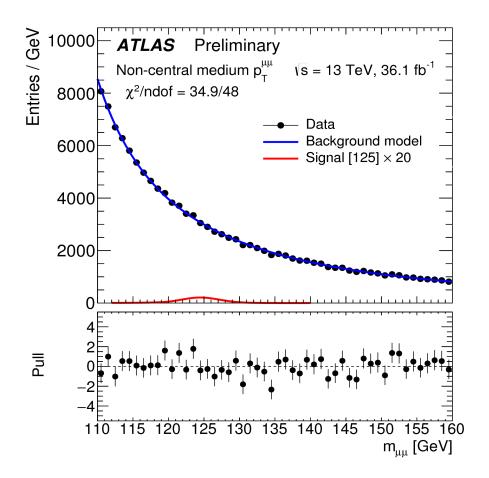
• Negative κ_{F} can be excluded at 95% C.L.

•
$$\kappa_{V} = 1.03 \pm 0.06, \kappa_{f} = 0.88^{+0.19}_{-0.15}$$

 Fit without assumptions on γγ and gg vertices:


•
$$\kappa_g = 1.08^{+0.11}_{-0.10}, \kappa_{\gamma} = 0.93^{+0.09}_{-0.08}$$

Higgs Cross-section results 7, 8 and 13 TeV



Bjarne Stugu IHEP 2017 July 7th

The sensitivity to $H \rightarrow \mu\mu$ is getting interesting

Signal strength $\mu < 2.8$ (95% c.l.)

Plot shows just one of the categories

Conclusions

- Higgs physics at the LHC has moved to a vigorous measurement phase with access to
 - Cross-sections
 - Individual couplings
- Precision is around or approaching 10% for many of the estimates performed
- No deviations from the Standard Model at this precision
- ATLAS results for 13 TeV 2015+2016 data are close to completion for most Higgs analyses
 - Some channels missing
 - ttH results are coming up
 - Full combination study to be performed
- Next milestone:

Collect good data in 2017-2018 and analyse the full RUN2 dataset

Theoretical cross-sections, 13 TeV

Table 1: Summary of event generators and PDF sets used to model the signal and the main background processes. The SM cross sections σ for the Higgs production processes with $m_H = 125.09$ GeV are also given separately for $\sqrt{s} = 13$ TeV, together with the orders of the calculations.

Process	Generator	Showering	PDF set	Order of calculation	σ [pb] $\sqrt{s} = 13 \text{ TeV}$
ggH	POWHEG NNLOPS	Ρυτηία8	PDF4LHC15	N3LO(QCD)+NLO(EW)	48.52
VBF	POWHEG BOX	Рутніа8	PDF4LHC15	NNLO(QCD)+NLO(EW)	3.78
WH	POWHEG BOX	Рутніа8	PDF4LHC15	NNLO(QCD)+NLO(EW)	1.37
$qq \rightarrow ZH$	POWHEG BOX	Рутніа8	PDF4LHC15	NNLO(QCD)+NLO(EW)	0.76
$gg \rightarrow ZH$	Powheg Box	Рутніа8	PDF4LHC15	NNLO(QCD)+NLO(EW)	0.12
tīH	MadGraph5_aMC@NLO	Рутніа8	NNPDF3.0	NLO(QCD)+NLO(EW)	0.51
$b\bar{b}H$	MadGraph5_aMC@NLO	Рутніа8	CT10	5FS(NNLO)+4FS(NLO)	0.49
tHqb	MadGraph5_aMC@NLO	Рутніа8	CT10	5FS(NLO)	0.07
tHW	MadGraph5_aMC@NLO	Herwig++	CT10	5FS(NLO)	0.02
	-	-			

