Observing Geometrical Torsion

Lucat Stefano & Tomislav Prokopec

・ロト・使・・ミト・ミト・ヨーの丸の

Universiteit Utrecht

Content

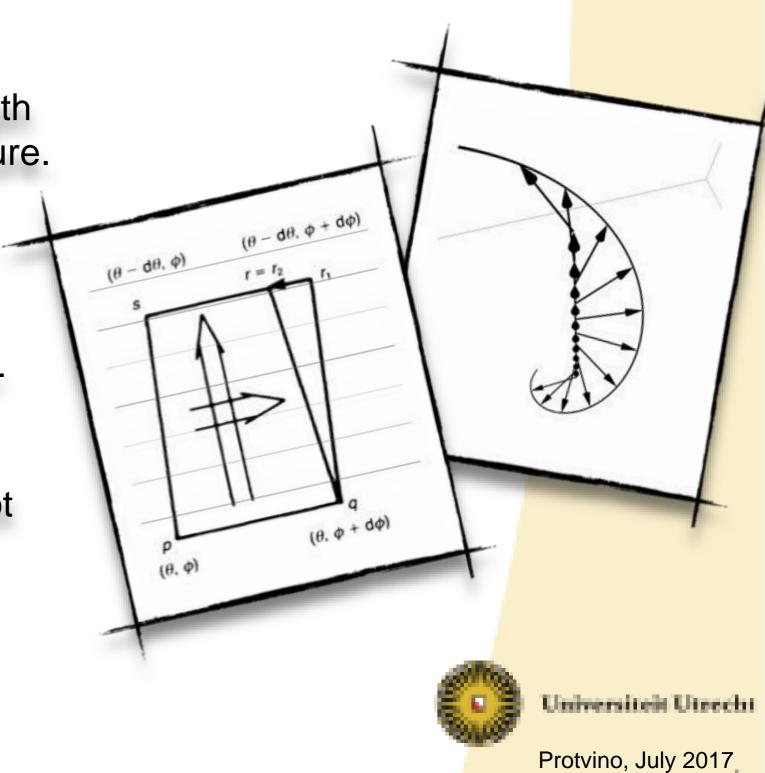
- Gravity with torsion, "Who, What, When, Where, Why".
- Weyl invariant gravity + standard model with torsion.
- Possibility of production of torsion waves and detection.
- Perspective on future directions (preliminary results).
- Conclusions

・ロト・ボト・ミト・ミト モーの丸の

Universiteit Utrecht

Some geometrical intuition

- Einstein: Gravity is a geometrical force, its strength given by space-time curvature.
- Cartan: adds an additional geometrical structure, separated from curvature, linked to "twisting" of spacetime.
- Misconception: torsion is not just an external field. It is a geometrical universal field.



The geometrical field

As a geometrical field, parallel transport.

$$abla \dot{\gamma} \dot{\gamma} = 0$$
 $\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} = -\Gamma^{\mu}{}_{lphaeta} \frac{\mathrm{d} x^{lpha}}{\mathrm{d}\tau} \frac{\mathrm{d} x^{eta}}{\mathrm{d} au}$

$$ext{if }
abla_{\dot{\gamma}} g_{\mu
u} = 0 \implies g_{\mu
u} = \left\{ \mathcal{P}\left[\exp\left(\int_{\gamma} \Gamma^{\lambda}_{\sigma\mu} \dot{\gamma}^{\mu}
ight)
ight]
ight\}^2$$

 One gains Weyl symmetry. Curvature and geodesics become invariant under rescaling of proper lengths:

$$d\tau^2 \to \Omega^2(\tau) d\tau^2, g_{\mu\nu} \to \Omega^2(x) g_{\mu\nu}$$

Space-time dependent rescaling of dimension full quantities

Universiteit Utrecht

Coupling to matter

• Minimal couple prescription, in accordance with GR symmetries

 $abla_{\mu}(\Lambda(x) \cdot \Phi) = \Lambda(x) \cdot
abla_{\mu} \Phi,$ $\Lambda(x) \in SO(1,3)$

2 040

- Matter couple universally to connection:
- Couple microscopically:

人名法 人名法

4 C F 4 🗇 F

to matter

$$\frac{\partial_{\mu} \Phi \rightarrow \nabla_{\mu} \Phi}{\eta^{\mu\nu} \rightarrow g^{\mu\nu}}$$

$$\nabla_{\mu}(\Omega(x)\mathbb{1} \cdot \Phi) = \Omega(x)\mathbb{1} \cdot \nabla_{\mu} \Phi,$$

$$\Omega(x) \in \mathbb{R}^{+}$$
Chiral
Symmetry
$$\mathcal{L}_{\psi} = \Gamma_{\alpha\beta\lambda} \overline{\psi} \gamma^{[\alpha} \gamma^{\beta} \gamma^{\lambda]} \psi$$

$$\mathcal{L}_{\Phi} = \Phi^{\dagger} T_{\mu} (2\partial^{\mu} + T^{\mu}) \Phi$$
Weyl
Symmetry
Weyl
Symmetry
Universities Uncertained
Proteino, July 2017

The conformal extension of the standard model

- Scalars couple to the torsion trace. At least two scalars, Higgs and an additional dilaton.
- Fermions couple to skew symmetric torsion, but not to the trace. The torsion trace contribution cancels in the action.
- Gauge fields are conformal only in four dimensions. For D generic, conformal invariance breaks gauge symmetry.

$$\begin{split} L &= \left(\frac{1}{2\alpha^2} R - \frac{1}{2} \bar{\nabla}_{\mu} \Phi \bar{\nabla}^{\mu} \Phi - V(\Phi) \right) \\ L &= \frac{i}{2} \left(\bar{\psi} \gamma^{\mu} \bar{\nabla}_{\mu} \psi - \bar{\nabla}_{\mu} \bar{\psi} \gamma^{\mu} \psi \right) \\ F_{\mu\nu} &= \bar{\nabla}_{[\mu} A_{\nu]} \stackrel{D \to 4}{=} (dA)_{\mu\nu} \\ L &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + L_{int} \\ \end{split}$$

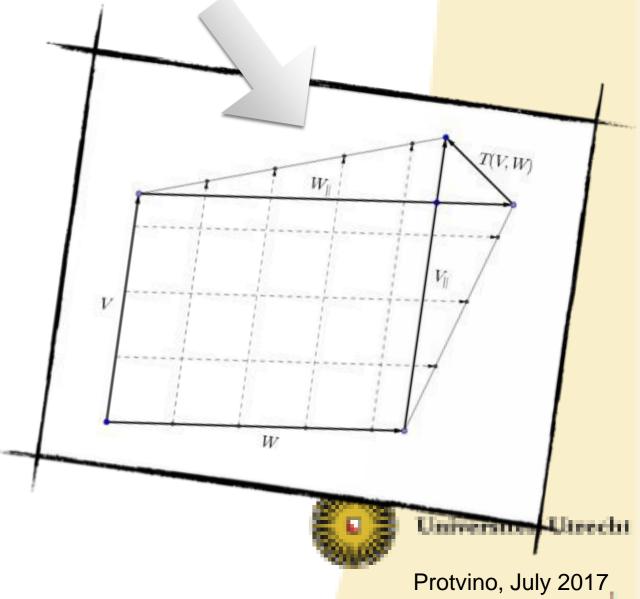
 (Φ^2)

The link between torsion and Weyl symmetry

• Why should torsion be linked to Weyl symmetry?

$$e^{a}_{\mu}e^{b}_{\nu}\eta_{ab} = g_{\mu\nu}$$
$$e^{a}_{\mu} \rightarrow e^{\theta(x)}e^{a}_{\mu}$$
$$\omega^{a}_{b} \rightarrow \omega^{a}_{b}$$
$$T^{a} \rightarrow T^{a} + e^{a} \wedge d\theta$$

- The torsion trace is naturally linked to scale transformations.
- Transforming torsion and vierbein leaves the Cartan connection invariant.



Link to chiral transformations

Geometrical fields, linked to two anomalous symmetries of the

- Geometrical breaking of the "right hand rule".
- Skew symmetric torsion, couples to chiral fermionic current.



standard model. Maybe we can learn more about it by studying

Universiteit Utrecht

Protvino, July 2017

Skew Symmetric Torsion

it carefully.

Dynamical Torsion

 If a field couples through covariant derivatives

 If torsion couples to matter in a universal manner, through Weyl and chiral charge, one loop effect will turn it dynamical.

$$\begin{aligned} \mathcal{D}_{\mu} \Phi \subset \mathcal{L} \\ \mathcal{F}_{\mu\nu} &= \left[\mathcal{D}_{\mu}, \, \mathcal{D}_{\nu} \right] \subset \Gamma_{1-loop} \\ \Gamma_{1-loop} \subset \left\{ \begin{array}{c} \left(\partial_{\mu} T_{\nu} - \partial_{\nu} T_{\mu} \right)^{2} ; \\ \left(\partial_{\mu} \Sigma_{\nu}^{\star} - \partial_{\nu} \Sigma_{\mu}^{\star} \right)^{2} \end{array} \right. \\ \left. \Sigma^{\star \mu} &= \epsilon^{\mu \alpha \beta \gamma} \Gamma_{[\alpha \beta \gamma]} \\ + \mathcal{O} \left(R^{2} \right) \text{ operators} \\ \end{aligned}$$

Observations: in Colliders, via EFT interactions. Geometrically, via geodesics displacement.

Universiteit Utrecht

Protvino, July 2017

Irreducible component

Sources (Torsion trace)

 $\Box h_{ij} = \frac{1}{M_P^2} T_{ij} + \mathcal{O}(h^2)$

- If our intuition is correct, torsion trace couples to fields dilatation current.
- If scale symmetry is realised, dilatation current is conserved. Energy momentum is traceless. No torsion production.
- But we live in the broken phase, effectively there is a scalar mode, satisfying:

Gravitational waves:

$$T^{\mu}_{\mu} = \partial_{\mu}D^{\mu}$$

$$\implies D^{\mu} = x^{\nu} T^{\mu}_{\nu}$$

$$T_{\mu} = \partial_{\mu}\theta$$

$$\Box \theta = \frac{1}{M_P^2} T^{\mu}_{\mu} + \mathcal{O}(\theta^2)$$

0

Universiteit Utrecht

Geometrical Detection

 Jacobi fields: give the displacement of nearby parallel geodesics, no skew symmetric torsion

$$egin{aligned}
abla_{\dot{\gamma}}
abla_{\dot{\gamma}} J_{\perp} + 2
abla_{\dot{\gamma}} T(\dot{\gamma}, J_{\perp}) = \ = R(\dot{\gamma}, J_{\perp}) \dot{\gamma} \end{aligned}$$

Linearised equation:

Perspective: Conformal symmetry breaking At the conformal point we can construct a self consistent Weyl

- At the conformal point we can construct a self consistent wey invariant theory.
- What is such UV theory? Maybe SO(2,4) local. Symmetry breaking:

$$SO(2,4) \to SO(1,4) \to SO(1,3)$$
$$\mathcal{M} = \Omega^{-1} d\Omega, \ \Omega \subset SO(2,4)/SO(1,3)$$

$$\begin{bmatrix} K^{a}, P^{b} \end{bmatrix} = 2i\eta^{ab}D - 2i\Sigma^{ab}, \quad e^{a}_{\mu} = e^{\theta}\delta^{a}_{\mu}, T^{a} = e^{a} \wedge d\theta$$

$$P^{b}, \Sigma^{ab}, K^{a}, D \in SO(2, 4)$$
Low energy degrees of freedom
Universiteit U

Protvino, July 2017

・ロト・部・・モト・モト モーの丸の

Perspective: Weyl anomaly

 Conformally invariant theories present quantum anomalies in the Weyl symmetry Ward identities

 Local anomaly proportional to topological invariant, Gauss-Bonnet integral

 $\langle T^{\mu}_{\mu} \rangle = \langle \nabla_{\mu} \Pi^{\mu} \rangle$

 $\langle T^{\mu}_{\mu} \rangle \neq 0$

$$\langle T^{\mu}_{\mu} \rangle \propto \epsilon^{\alpha\beta\gamma\delta} \epsilon_{\mu\nu\lambda\sigma} R^{\mu\nu}{}_{\alpha\beta} R^{\lambda\sigma}{}_{\gamma\delta}$$

 $\langle \nabla_{\mu}\Pi^{\mu} \rangle \propto \epsilon^{\alpha\beta\gamma\delta} \overset{\sim}{\epsilon_{\mu\nu\lambda\sigma}} R^{\mu\nu}{}_{\alpha\beta} R^{\lambda\sigma}{}_{\gamma\delta}$

Solution valid at the conformal fixed point

 $\beta(\{\lambda_i\}) \to 0, \ \mu \to \infty$

040

Conclusions

- Study of torsion field yields rich theoretical extensions of gravity and the standard model.
- Extend the symmetry of the theory to include Weyl symmetry (a gravitational gauge symmetry) and chiral transformations (which does not extend to space-time.
- In principle, direct detection is possible, but likely difficult.
- "Well defined" UV completions for these models (know UV theory). Can we use extended symmetries to learn more about quantum gravity?

Universiteit Utrecht

Thanks for attention Questions?

・ロトトボトト ネト・ネト 一条 一切もの

Universiteit Utrecht