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QCD at finite temperature and nonzero chemical potential

QCD at nonzero temperature and baryon chemical potential plays a
fundamental role in many different physical systems. QCD at
extreme conditions

neutron stars
heavy ion collision experiments
Early Universe



QCD Phase Diagram

Two main phase transition
confinement-deconfinement
chiral symmetry breaking phase—chriral symmetric phase



Methods of dealing with QCD

Methods of dealing with QCD
perturbative QCD, pQCD, high energy
First principle calcaltion – lattice Monte Carlo simulations,
LQCD
Effective models

Chiral pertubation theory χPT
Nambu–Jona-Lasinio model NJL

Polyakov-loop extended Nambu–Jona-Lasinio model PNJL
Quark meson model

1/N expansion (large number of colors) G.t’Hooft.
the predictions of 1

Nc
expansions for QCD are mostly of a

qualitative nature
Holographic methods, Gauge/gravity or gauge/string duality
AdS/CFT conjecture



(1+1)- dim Gross-Neveu model

(1+1)-dimensional Gross-Neveu (GN) model possess a lot of
common features with QCD

renormalizability
asymptotic freedom
sponteneous chiral symmetry breaking in vacuum
dimensional transmutation
have the similar µB − T phase diagrams

Also
Relative simplicity, renormalizability and possibility to solve theory
in the leading order of 1/N expansion

NJL2 model can be used as a laboratory for the qualitative
simulation of specific properties of QCD at arbitrary energies



Gross-Neveu and Nambu–Jona-Lasinio model

Gross-Neveu model

L = q̄γν i∂νq +
G

Nc
(q̄q)2

q → γ5q

discrete symmetry

L̃ = q̄
[
γρi∂ρ − σ

]
q − Nc

4G
σ2

Nambu–Jona-Lasinio model

L = q̄γν i∂νq+
G

Nc

[
(q̄q)2+(q̄iγ5q)2

]
q → e iγ5αq

continuous symmetry

L̃ = q̄
[
γρi∂ρ−σ−iγ5π

]
q−Nc

4G

[
σ2+π2

]
.

Chiral symmetry breaking
1/Nc expansion, leading order

〈q̄q〉 6= 0

〈σ〉 6= 0 −→ L̃ = q̄
[
γρi∂ρ − 〈σ〉

]
q



Isotopic and axial isotopic chemical potentials

Isotopic chemical potential

Dense matter with isotopic imbalance in neutron stars, heavy ion
collision experiments

nI = nu − nd ←→ µI = µu − µd
axial chemical potential

Systems with chiral imbalance have attracted some interest in
recent years.
Chiral imbalance is a nonzero difference between densities of left-
and right-handed fermions,

n5 = nR − nL ←→ µ5 = µR − µL
arise from quantum anomaly in the quark-gluon-plasmaand leads to
the chiral magnetic effect.



Axial isotopic chemical potentials

axial isotopic chemical potentials

µI5 = µuR − µuL + µdL − µdR



Model and its Lagrangian

We consider a two-dimensional model which describes dense quark
matter with two massless quark flavors (u and d quarks).

L = q̄
[
γν i∂ν +

µB
3
γ0 +

µI
2
τ3γ

0 +
µI5
2
τ3γ

0γ5
]
q+

+
G

Nc

[
(q̄q)2 + (q̄iγ5~τq)2

]
, (1)

The model (16) is a generalization of the two-dimensional
Gross-Neveu model with a single massless quark color Nc -plet to
the case of two quark flavors and additional baryon µB -, isospin µI -
and axial isospin µI5 chemical potentials. These parameters are
introduced in order to describe in the framework of the model (1)
quark matter with nonzero baryon nB -, isospin nI - and axial isospin
nI5 densities, respectively.



Symmetries of Lagrangian

Lagrangian is invariant with respect to the abelian UB(1), UI3(1)
and UAI3(1) groups,

UB(1) : q → exp(iα/3)q; (2)
UI3(1) : q → exp(iατ3/2)q; (3)
UAI3(1) : q → exp(iαγ5τ3/2)q. (4)

Lagrangian (1) is invariant with respect to the electromagnetic
UQ(1) group,

UQ(1) : q → exp(iQα)q, (5)

where Q = diag(2/3,−1/3).



Equivalent Lagrangian

To find the thermodynamic potential of the system, we use a
semi-bosonized version of the Lagrangian (16), which contains
composite bosonic fields σ(x) and πa(x) (a = 1, 2, 3)

L̃ = q̄
[
γρi∂ρ + µγ0 + ντ3γ

0 + ν5τ3γ
1 − σ − iγ5πaτa

]
q

−Nc

4G

[
σσ + πaπa

]
. (6)

For bosonic fields one has

σ(x) = −2
G

Nc
(q̄q); πa(x) = −2

G

Nc
(q̄iγ5τaq). (7)



Chiral density wave and pion wave

In vacuum, i.e. µ = 0, ν = 0 and ν5 = 0, 〈σ(x)〉 and 〈πa(x)〉 do
not depend on space coordinate x . However, in a dense medium,
when µ 6= 0, ν 6= 0 and ν5 6= 0, the ground state expectation values
of bosonic fields might have a nontrivial dependence on x .
We will use the following ansatz:

〈σ(x)〉 = M cos(2bx), 〈π3(x)〉 = M sin(2bx),

〈π1(x)〉 = ∆ cos(2b′x), 〈π2(x)〉 = ∆ sin(2b′x),

〈π+(x)〉 = ∆e2b
′x , 〈π−(x)〉 = ∆e−2b

′x ,

where M, b, b′ and ∆ are constant dynamical quantities. In fact,
they are coordinates of the global minimum point of the
thermodynamic potential (TDP) Ω(M, b, b′,∆).



In the leading order of the large Nc -expansion it is defined by the
following expression:∫

d2xΩ(M, b, b′,∆) = − 1

Nc
Seff{σ(x), πa(x)}

∣∣
σ(x)=〈σ(x)〉,πa(x)=〈πa(x)〉,

(8)



for the thermodynamic potential one can obtain

Ω(M, b, b′,∆) =
M2 + ∆2

4G
+ i

∫
d2p

(2π)2
lnP4(p0). (9)

where
P4(p0) = η4 − 2aη2 − bη + c, η = p0 + µ

a = M2 + ∆2 + p21 + ν̃2 + ν̃25 ; b = 8p1ν̃ν̃5;

c = a2 − 4p21(ν̃2 + ν̃25)− 4M2ν̃2 − 4∆2ν̃25 − 4ν̃2ν̃25 .

ν̃ = ν + b, ν̃5 = ν5 + b′.

µ ≡ µB/3, ν = µI/2, ν5 = µI5/2

.



Duality

The thermodynamic potential is invariant with respect to the
so-called duality transformation

D : M ←→ ∆, ν ←→ ν5, b ←→ b′. (10)

If we change axes ν ←→ ν5 then we should exchange PC ←→ CSB.

F1(M) ≡ Ωren(M,∆ = 0)

F2(∆) ≡ Ωren(M = 0,∆)

F2(∆) = F1(∆)

∣∣∣∣∣
ν←→ν5

. (11)



Duality

L =
N∑

k=1

ψ̄k

[
γν i∂ν + µγ0 + µ5γ

0γ5
]
ψk

+
G1

N

( N∑
k=1

ψ̄kψk

)2

+

(
N∑

k=1

ψ̄k iγ
5ψk

)2
+

+
G2

N

(
N∑

k=1

ψT
k εψk

) N∑
j=1

ψ̄jεψ̄
T
j

 ,

So the TDP (??) is invariant with respect to the following duality
transformation D:

D : G1 ←→ G2, µ←→ µ5, M ←→ ∆. (12)



Orbifold equivalences

AdS-CFT duality is strong-weak duality
Orbifold equivalence is strong-strong duality
Orbifold equivalences connect gauge theories with different gauge
groups and matter content in the large Nc limit.
There are a class of QCD-like theories which are free from the sign
problem.
The whole or the part of the phase diagrams of dual theories should
be universal in the large-Nc limit via the orbifold equivalence



Phase portrait (µ, ν, ν5) in homogeneous case
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Рис.: (µ, ν, ν5) phase diagram in homogeneous case



Phase portrait in homogeneous case
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Рис.: The (ν, µ)-phase portrait of the model for different values of the
chiral chemical potential ν5: (a) The case ν5 = 0. (b) The case
ν5 = 0.2m.



Phase portrait in homogeneous case
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Рис.: The (ν, µ)-phase portrait of the model for different values of the
chiral chemical potential ν5:(a) The case ν5 = 0.5m. (b) The case
ν5 = m.



Inhomogeneous case

At M = 0 and ∆ = 0 the expression for thermodynamic potential
does depend on b and b′. This is quite unphysical and somehow we
need to change the expresssion for thermodynamic potential.

F̃1(M, b) = Ω̃(M, b, b′, 0) = F1(M, b)− F1(0, b) + F1(0, 0) (13)

F̃2(∆, b′) = Ω̃(0, b, b′,∆) = F2(∆, b′)− F2(0, b′) + F2(0, 0) (14)

for thermodynamic potential

Ω̃(M, b, b′,∆) = Ω(M, b, b′,∆)− Ω(M, b, b′, 0) (15)

+Ω(M, b, 0, 0)− Ω(0, b, b′,∆) + Ω(0, 0, b′,∆)

−Ω(0, b, 0, 0)− Ω(0, 0, b′, 0) + Ω(0, b, b′, 0) + Ω(0, 0, 0, 0)



Phase portrait (µ, ν, ν5) in inhomogeneous case

ν5

ν

μ

ICSBd

Mixed inhomogeneous phase 

Рис.: (µ, ν, ν5) phase diagram in inhomogeneous case



Phase portrait (µ, ν)

0.1 0.2 0.3 0.4
0

0.4

0.8

1.2

1.6

2

2.4

2.8

I I I ( ICSB)

IV (ICSB and PC)

5 = 0

µ

0.1 0.2 0.3 0.4
0

0.4

0.8

1.2

1.6

2

2.4

2.8

I (symmet r ic)

I I ( IPC)

IV (IPC and ICSB degeneracy)

5 = 0.051m

I I I ( ICSB)

= 5

µ

Рис.: (µ, ν) phase diagram at
ν5 = 0

Рис.: (µ, ν) phase diagram at
ν5 = 0.051m



Phase portrait (µ, ν)

0.1 0.2 0.3 0.4
0

0.4

0.8

1.2

1.6

2

2.4

2.8

I (symmet r ic)

I I ( IPC)

IV (IPC and ICSB degeneracy)

5 = 0.072m

I I I ( ICSB)

= 5

µ

0.1 0.2 0.3 0.4
0

0.4

0.8

1.2

1.6

2

2.4

2.8

I (symmet r ic)I I ( IPC)

IV (ICSB and IPC)

I I I ( ICSB)

5 = 0.13m

= 5

µ

Рис.: (µ, ν) phase diagram at
ν5 = 0.072m

Рис.: (µ, ν) phase diagram at
ν5 = 0.13m



Phase portrait
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Рис.: (µ, ν) phase diagram at
ν5 = 3m

Рис.: (µ, ν5) phase diagram at
ν = 0.13m



Phase portrait
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Phase portrait
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Рис.: The behavior of M0, k0, k
′
0,∆0 as functions of µ for fixed

ν5 = 0.25m and ν = 0.251m.



Phase portrait (ν, ν5)
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Рис.: (ν, ν5) phase diagram at µ > 0.707



Conclusions

Our consideration aims at study of the properties of chirally
(µI5 6= 0) and isotopically (µI 6= 0) asymmetric dense (µB 6= 0)
quark matter with inhomogeneous condensates.

At µI5 6= 0 even in homogeneous case there is charged PC
phase with nonzero baryon density. The main result is that µI5
generates charged pion condensation in dense quark matter.
Charged PC phase realises at any nonzero µI5 6= 0 in contrast
to homogeneous case where it realises only for rather larger
values of µI5( larger than some value). It means that charged
pion condensation happens at even small chiral asymmetry.
In the leading order of the large-Nc approximation in the
framework of the NJL2 model (1) there is a duality
correspondence between CSB and charged PC phenomena.
Inhomogeneous condensates are quite favoured compared to
homogeneous ones.All phases at the phase diagram are
inhomogeneous or symmetric ones.


