

QCD and Electroweak Measurements with the ATLAS detector

Aleksei Ezhilov

Petersburg Nuclear Physics Institute

on behalf of ATLAS Collaboration

Why Standard Model physics?

- Test predictions of perturbative QCD
- Understanding of backgrounds to new physics searches
- Precision measurements of observables to test the consistency of the Electroweak Sector

Probes
Jets W 7 bosons
Photons
Top -> yersterday talk by Kevin Black

Summary of SM cross section measurement

Inclusive jet cross sections

arxiv:1706.03192

The anti-k_t jet clustering algorithm: R=0.4 and R=0.6

The dominant systematic uncertainty: from the jet energy calibration.

 Significant reduction of the uncertainties (compared to previous jet cross-section measurements)

- The data are compared to the NLO QCD prediction with the MMHT2014 PDF set corrected for non-perturbative and electroweak effects.
- The theory prediction describes the gross features in the data.

Inclusive jet cross sections

- low p_T the level of agreement is very sensitive to non-perturbative effects (10-20%)
- the highest $p_{\rm T}$ at central rapidities they are typically up to 10–20%
- similar behavior: CT14, NNPDF3.0 and MMHT2014 PDF sets
- HERAPDF2.0 lower than data ($300 < p_T < 1000$ GeV)

IHEP2017, Protvino

Inclusive jet cross sections

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-092/

• The behaviour is similar to previous results

Measurements of the production cross section of a Z boson + jets

- Agreement with data in range up to $p_T = 500 \text{ GeV}$ within systematic uncertainties
- Measured cross section as a function of the exclusive jet multiplicity shows disagreement for Sherpa, Alpgen+Py6 and MG5_aMC+Py8 FxFx in high jet multiplicity region (where jets are produced by the parton shower are nonnegligible)

Measurements of W mass

Events / 0.5 GeV

Data / Pred.

×10³

120

100

0.98

30 32 34 36

140 Is = 7 TeV, 4.6 fb⁻¹

Overview of m_w measurements at ATLAS

arxiv:1701.07240

Data

44

38

40 42

46 48 50

p[|] [GeV]

 $W^+ \rightarrow e^+ v$ Background

 χ^2 /dof = 36/39

- The mass of the W boson is determined from fits to the transverse momentum of the charged lepton and to the transverse mass of the W-boson.
- Detector modeling and physics modeling have to be corrected to achieve a precision of 0.01%, which is required by the global electroweak fit.

Measurements of W mass

Overview of systematic uncertainties of the m_w measurements at ATLAS

- The systematic uncertainties are estimated separately for each source.
- The fit ranges ($32 < p_T^{-1} < 45$ GeV and $66 < m_T < 99$ GeV) minimise the total expected measurement uncertainty.
- 4 sources:
- electroweak and QCD corrections
- calibration of electrons and muons
- calibration of recoil
- electroweak, top-quark and multijet background estimation

Kinematic distribution	p_{T}^{ℓ}							
Decay channel	W -	$\rightarrow e\nu$	• W -	$\rightarrow \mu \nu$	W -	$\rightarrow e\nu$	W –	$\rightarrow \mu \nu$
W-boson charge	W^+	W^-	W^+	W^{-}	W^+	W^-	W^+	W^-
$\delta m_W [\text{MeV}]$								
$W \to \tau \nu$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3
$Z \to ee$ (fraction, shape)	3.3	4.8	_	-	4.3	6.4	-	_
$Z \to \mu \mu$ (fraction, shape)	_	_	3.5	4.5	_	_	4.3	5.2
$Z \to \tau \tau$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3
WW, WZ, ZZ (fraction)	0.1	0.1	0.1	0.1	0.4	0.4	0.3	0.4
Top (fraction)	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3
Multijet (fraction)	3.2	3.6	1.8	2.4	8.1	8.6	3.7	4.6
Multijet (shape)	3.8	3.1	1.6	1.5	8.6	8.0	2.5	2.4
Total	6.0	6.8	4.3	5.3	12.6	13.4	6.2	7.4

07.07.17

Decay channel		$W \rightarrow e$	V	$W \rightarrow$	μν			
Kinematic distribution	p_{i}^{t}	$\Gamma_{\Gamma}^{\ell} m_{\Gamma}$	г р	ε Τ	m_{T}			
δm_W [MeV]								
FSR (real)	< 0.	1 < 0.	1 < 0.	1 <	0.1			
Pure weak and IFI correction	s 3.3	3 2.5	5 3.	5 2	2.5			
FSR (pair production)	3.0	6 0.8	8 4.	4 (0.8			
Total	4.9	9 2.0	5 5 .	6	2.6			
W-boson charge		W ⁺		V	V-	Combi	ined	
Kinematic distribution		p_1^ℓ	$m_{\rm T}$	p_{T}^ℓ	m_{T}	p_{T}^ℓ	$m_{\rm T}$	
δm_W [MeV]		12.1	14.0	12.0	14.0		07	
AZ tune		13.1	14.9	12.0	14.2	8.0	8.7	
Charm-quark mass		1.2	2 1.5	1.2	1.5	1.2	1.5	
Parton shower $\mu_{\rm F}$ with heavy-flavour de	correlati	on 5.0	6.9	5.0	6.9	5.0	6.9	
Parton shower PDF uncertainty		3.6	6 4.0	2.6	2.4	1.0	1.6	
Angular coefficients		5.8	5.3	5.8	5.3	5.8	5.3	
Total		15.9	9 18.1	14.8	17.2	11.6	12.9	
$ \eta_{\ell} $ range	[0.0	[0.0, 0.6]		, 1.2]	[1.8	32, 2.4]	Com	bined
Kinematic distribution	$p_{\mathrm{T}}^{\widetilde{\ell}}$	m_{T}	$p_{ ext{T}}^{\widetilde{\ell}}$	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
δm_W [MeV]								
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3
W-boson charge				W^+		W^-	Cor	nbine
Kinematic distribution			p_1^ℓ	<i>m</i>	$T p_{\tau}^{\ell}$	$\frac{p}{\Gamma} m'$	Γp_{T}^{ℓ}	$m_{\tilde{c}}$
$\delta m_W [{ m MeV}]$								
$\langle \mu \rangle$ scale factor			0.2	2 1.	.0 0.	2 1.	0 0.2	1.
$\Sigma \bar{E}_{T}$ correction			0.9) 12	.2 1.	1 10.	2 1.0	11.
Residual corrections (statistic	cs)		2.0) 2.	7 2.	0 2.	7 2.0	2.
Residual corrections (interpo	(ation)		1.4	1 3.	.1 1	4 3.	1 1.4	3.
Residual corrections $(Z \to W)$	′ extrap	oolatior	n) 0.2	2 5	.8 0.	2 4.	3 0.2	5.
- Total			2.6	3 14	2 2	7 11	8 26	13 (

arxiv:1701.07240

Measurements of W mass

M_w = 80370 ± 19 MeV

arxiv:1701.07240

- close to current world average and compatible to current best ones.
- consistent with other results and SM electroweak fit

General approach of W boson mass measurement:

Precise measurement of the Z boson production and testing the MC event generators there. One more important aspect: modeling of the angular coefficients.

The correction procedure is based on the factorisation of the fully differential leptonic Drell-Yan cross-section:

$$\frac{d\sigma}{dp_{1} dp_{2}} = \left[\frac{d\sigma(m)}{dm}\right] \left[\frac{d\sigma(y)}{dy}\right] \left[\frac{d\sigma(p_{T}, y)}{dp_{T} dy} \left(\frac{d\sigma(y)}{dy}\right)^{-1}\right] \left[(1 + \cos^{2}\theta) + \sum_{i=0}^{7} A_{i}(p_{T}, y)P_{i}(\cos\theta, \phi)\right]$$
Breit-Wigner
Parton Showers
Fixed-order perturbative QCD predictions
$$\frac{\frac{1}{2}(1 - 3\cos^{2}\theta) > \frac{3}{20}(A_{0} - \frac{2}{3})}{(-1 + \cos^{2}\theta)^{2}}$$
where A_i – angular coefficients (A_i are the ratios of the helicity cross-sections for Z/\gamma^{*} relative to unpolarized productions):
$$\frac{\sin\theta}{\sin\theta} = \frac{1}{4}A_{i}$$

$$\frac{\sin\theta}{\sin\theta} = \frac{1}{4}A_{i}$$

Measurement of angular coefficients

JHEP08(2016)159

 A₀-A₂ (Lam-Tung) sensitive to higher order corrections (significant deviation from NNLO predictions)

Precision p_T Z-boson measurement

- predictions are not expected to describe the shape of the data for low values of p^{ll}_{T} due to effect soft-gluon emissions
- no significant changes due to NLO EWK correction vs the difference between the predictions and the data

Isolated photon pair production

arxiv:1704.03839

- The prediction from Diphox (NLO) 36% lower (>2 standard deviations)
- The prediction from Resbos (NLO + NNLO) -28%
- The prediction from 2γNNLO (NNLO) 16%
- > The prediction from Sherpa 2.2.1 (ME+PS at NLO) is in agreement with the data.

Inclusive isolated-photon production

• NLO perturbative QCD and Monte Carlo event-generator predictions provide an adequate description of the data

Dibosons production

Measurement of the ZZ production cross section

arXiv:1610.07585

- The cross section: 7.3±0.4(stat.) ±0.3(syst.) ±0.2(lumi) pb
- The result is consistent with latest SM predictions (that include high-order QCD effects)

Measurement of the ZZ production cross section

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-031/

- The cross section: 46.4±1.5 (stat.)±1.0 (syst.)^{+1.5}-1.4 (lumi) pb
- The result is consistent with latest SM predictions

Conclusions

- A lot of QCD and electroweak measurement were done by ATLAS collaboration.
- Only small part shown today (the latest results)!
- The presented results are consistent with theoretical predictions
- A lot of analysis are ongoing using lager statistic available (@13 TeV)

BACKUP

The ATLAS detector

