
AAI for CMS Data
Brian Bockelman

Desired CMS data access
policies (simplified)

• CMS logical namespace starts at /store.

• Only CMS users may files inside /store.

• Users can write “permanent” outputs to /store/user/$USERNAME at sites they
are assigned to.

• Only the “owner” allowed to write/create/delete files inside their own /store/
user area.

• Never developed a collaboration-wide policy about file ownership after user
leaves.

• Users can write transient outputs to /store/temp/user/$USERNAME.$ID_HASH
at any CMS site.

• Only /cms/Role=production is allowed to write in the remainder of CMS
namespace.

User Data Flows
• User jobs read via ROOT using a custom set of CMSSW plugins. About

20% of user jobs stream data from offsite (via XRootD).

• User jobs write via a custom set of plugins. The plugin to use is controlled
by the site or processing framework (CRAB3).

• The most popular plugins are based on gfal-copy and xrdcp.

• User stageout goes to:

• Local site storage. Failing that,

• “Fallback site storage”. Each site configuration specifies zero or one
“fallback” output area. Failing that,

• “Home storage”. Ultimate destination for the user outputs

User AAI
• User identity credentials (limited X509 user proxy) are shipped to

the worker node:

• Reads are done with user proxy, initiated by job wrapper.

• Writes are done with user proxy, initiated by job wrapper.

• Copies from transient to permanent storage is done by a central
component (ASO). User delegates proxy to MyProxy and allows
ASO to receive a copy.

• Hence final transfer is done with the user credentials.

• Traceability is “trivial” - everything is done under the user’s identity,
meaning sites ought to do this for us.

Works Well 
Except when it doesn’t

• This setup is about as “traditional grid” as possible.
Downsides are well-known:

• Storage considers the files to belong to the user, not the
VO.

• CMS cannot separately manage user files. CMS
provides no tools for managing user storage, either for
sites or users.

• User credentials fly all across the world; they are quite
powerful! Every single job has the power to delete files
from disk.

Random Thoughts
• We don’t want to ship identities to worker nodes. We probably want to ship access tokens:

• “The bearer of this token is allowed to write into/store/user/bbockelm. Signed, CMS”

• Access tokens are well understood by both HTTP and XRootD.

• This is basically the “ALICE model”.

• Google’s libmacaroons defines a mechanism for this. These provide:

• Decentralized verification: Don’t need to call back to the issuing service to validate.

• Attribute / value pairs: We can build our own schema on top of these.

• Attenuation: I can generate a new token with additional restrictions before handing it to the worker node.
E.g., limit token to only writing in a specific directory at a list of sites.

• Tokens are passed through a standard HTTP header. Trivial to use with curl or xrdcp. Contrast with X509
certificates, which must work with transport layer.

• Macaroons could be used to protect privacy - says what bearer can do, not who they are.

• Traceability would become a joint responsibility of site and VO.

Potential Demonstrator
• I’m interested in a demonstrator showing:

• Based on user identity, macaroon issued by a VO specifying read/write
permissions.

• Token delegated to a job, where it is restricted to just write that job’s output.

• Using a standard tool (curl, xrdcp, gfal-copy), stageout occurs with token.

• Storage stores file as belonging to “CMS” but creates an audit trail to the
original token.

• Since ALICE has previously done something similar with XRootD, the xrootd
daemon actually has most of the plugin APIs needed for such a demonstrator.

• Since tokens are so common in HTTP frameworks, I suspect these also
have the appropriate plugins.

