AAl for CMS Data

Brian Bockelman



Desired CMS data access
policies (simplified)

CMS logical namespace starts at /store.

Only CMS users may files inside /store.

Users can write “permanent” outputs to /store/user/SUSERNAME at sites they
are assigned to.

« Only the “owner” allowed to write/create/delete files inside their own /store/
user area.

 Never developed a collaboration-wide policy about file ownership after user
leaves.

Users can write transient outputs to /store/temp/user/SUSERNAME . SID HASH
at any CMS site.

Only /cms/Role=production is allowed to write in the remainder of CMS
namespace.



User Data Flows

o User jobs read via ROOT using a custom set of CMSSW plugins. About
20% of user jobs stream data from offsite (via XRootD).

o User jobs write via a custom set of plugins. The plugin to use is controlled
by the site or processing framework (CRAB3).

 The most popular plugins are based on gfal-copy and xrdcp.
* User stageout goes to:
* Local site storage. Falling that,

« “Fallback site storage”. Each site configuration specifies zero or one
“fallback” output area. Failing that,

 “Home storage”. Ultimate destination for the user outputs



User AA

o User identity credentials (limited X509 user proxy) are shipped to
the worker node:

 Reads are done with user proxy, initiated by job wrapper.
« Writes are done with user proxy, initiated by job wrapper.

« Copies from transient to permanent storage is done by a central
component (ASO). User delegates proxy to MyProxy and allows
ASO to receive a copy.

e Hence final transfer is done with the user credentials.

e Traceability is “trivial” - everything is done under the user’s identity,
meaning sites ought to do this for us.



Works Well
Except when it doesnt

e This setup Is about as “traditional grid™ as possible.
Downsides are well-known:

e Storage considers the files to belong to the user, not the
VO.

« CMS cannot separately manage user files. CMS

provides no tools for managing user storage, either for
sites or users.

* User credentials fly all across the world; they are quite

oowerful! Every single job has the power to delete files
from disk.



Random Thoughts

We don’t want to ship identities to worker nodes. We probably want to ship access tokens:

e “The bearer of this token is allowed to write into/store/user/bbockelm. Signed, CMS”

» Access tokens are well understood by both HTTP and XRootD.
e This is basically the “ALICE model”.
Google’s libmacaroons defines a mechanism for this. These provide:
» Decentralized verification: Don’t need to call back to the issuing service to validate.
 Attribute / value pairs: We can build our own schema on top of these.

« Attenuation: | can generate a new token with additional restrictions before handing it to the worker node.
E.g., limit token to only writing in a specific directory at a list of sites.

Tokens are passed through a standard HTTP header. Trivial to use with curl or xrdcp. Contrast with X509
certificates, which must work with transport layer.

Macaroons could be used to protect privacy - says what bearer can do, not who they are.

« Traceability would become a joint responsibility of site and VO.



Potential Demonstrator

* |I'm interested in a demonstrator showing:

e Based on user identity, macaroon issued by a VO specifying read/write
permissions.

* Joken delegated to a job, where it Is restricted to just write that job’s output.
« Using a standard tool (curl, xrdcp, gfal-copy), stageout occurs with token.

e Storage stores file as belonging to “CMS” but creates an audit trail to the
original token.

» Since ALICE has previously done something similar with XRootD, the xrootd
daemon actually has most of the plugin APls needed for such a demonstrator.

e Since tokens are so common in HTTP frameworks, | suspect these also
have the appropriate plugins.



