

DIANA Fellowship:
Improving BDTs in TMVA

By Andrew Carnes (University of Florida),
Sergei Gleyzer (University of Florida)

1

Introduction 2

● DIANA Fellowship
● October, November, and December 2016
● Improved Boosted Decision Trees (BDTs) in ROOT's TMVA

Presentation Outline 3

1) Debugged Regression Evaluation
2) Brief BDT algorithm overview
3) New Loss Functions
4) Parallelization

1. Evaluation

4

Evaluation Bug
5

● After building a regression model you use it to predict other data/events
● Evaluating predictions in regression was known to take too long

● Probably a bug somewhere
● 1 Million events over 10 trees with depth 4 should take on the order of 1 second
● TMVA took about 15 minutes
● Progress bar was drawn every event (1 Million Times in this case!)
● After fixing this bug the evaluation now takes 2 seconds
● Evaluation time was reduced 460x

● Bug fix applies for other regression algorithms, but this has not been studied

2. BDT Algorithm Overview

6

General regression evaluation was fixed. Now ...

So that we can understand the other improvements

Decision Trees 7

● Supervised Machine Learning
Algorithm

● Models “true values” by
discretizing space and fitting
constants

● Recursively split subspaces into two
regions

● Search regions along all features for
best split

Boosting 8

Boosting Iterations

0) y' = T
0

1) y' = T
0
 + T

1

2) y' = T
0
 + T

1
 + T

2

...
N) y' = T

0
 + T

1
 + T

2
 + T

3
 + … T

N

● Boosting uses a collection of trees to improve the accuracy of the algorithm
● Add trees to iteratively correct the predictions
● Each tree models optimum dy' that should be added at that stage

● dy' models the negative gradient of the Loss Function so that the error heads
towards a minimum

y' := predicted value
y := true value

BDT Algorithm 9

● Set Targets for new tree (Tree models dy' = grad)
● Build tree to model targets

● Search each feature for optimum split (split that minimizes loss)
● Split region into two daughter regions
● Fit appropriate constants in daughter regions
● Repeat for daughter regions until stopping criteria (MAX_DEPTH)

● Set optimal fits in terminal nodes, now that these regions are finalized
● Regions were built based upon the gradient
● Set constant fit in each region to minimize the loss there
● Scale by learning rate if desired

● Repeat until ntrees reaches MAX_TREES

3. Loss Functions

10

Loss Functions 11

● Loss Functions tell the algorithm how to measure the error
● Build a tree to minimize the loss!
● Different loss, different models!
● Use the appropriate loss to focus the regression on important events

● TMVA had a hard coded Loss Function, Huber
● Replaced hard coded loss function with an abstract class

● Implemented the abstract class with
● Least Squares Σ(y-y')2

● Absolute Deviation Σ|y-y'|
● Huber ΣF(y-y'), F = 0.5(y-y')2 for |y-y'| > a (quadratic

core)
 = a|y-y'| - 0.5a2 otherwise (linear tails)

Loss Functions 12

● Least Squares (Σ(y-y')2) counts the tails (large |y-y'|) the most
● Therefore should perform the best in the tails
● Worst in the core

● Absolute deviation (Σ|y-y'|) counts the tails the least
● Should perform the worst in the tails
● Best in the core

● Huber (quadratic core, linear tails) is inbetween the two
● Should be between both in the tails and the core

Loss Functions 13

● New loss function capability tested on a standard regression sample
● Behaves as expected in the core

● Absolute Deviation is best
● Followed by Huber
● Followed by Least Squares

● Behaves as expected in the tails
● Least Squares is best
● Followed by Huber
● Followed by Absolute Deviation

Loss Functions Conclusion 14

● Three New Loss Functions are implemented in TMVA BDTs and now
available in ROOT

● Since ROOT v6.0.8
● User can target the events they care about the most
● With the abstract class, the code is easily extended to add new

loss functions in the future
● The TMVA Users Guide has been updated to document the new

options
● A Jupyter notebook is available

● Showcases the new Loss Functions
● http://swan.web.cern.ch/content/machine-learning
● Provides an example for regression, which was missing before

http://swan.web.cern.ch/content/machine-learning

4. Parallelizing the Training

15

Parallelization
16

● Parallelized the training of the algorithm
● Can't build multiple trees at once since each new tree depends on the results of

the previous trees
● So we targeted the computationally lengthy processes in the boosting and building

of a single tree
● Naturally loops over the collection of training data are the longest processes

● Broke up the loop into chunks to be run in parallel
● Must loop over all the events to

● Update Targets for the next tree → Parallelized
● Build the tree

● Find the optimum split along each feature → Parallelized
● Update Predictions after building a tree → Parallelized

Build Tree Parallelization 17

The loop over the events to get
the best feature and split point

The loop over the events in order to
calculate some constants needed
for the best split calculation

nThreads
nThreads

T
im

e
 (

s)

T
im

e
 (

s)

● There are three processes that loop over the events
1) Calculate some constants necessary for the best split search
2) Search for the best split point along each feature
3) Filter the events from the internal node to the daughter nodes

● This was not parallelized since it involves pushing back to a vector
● 1&2 were parallelized by chunking the event loop

● Used ROOT's TthreadExecutor.hxx - multi-threading
● TThreadExecutor is built ontop of Intel's TBB library

Sum constants Search features for
optimum split

Active time over 10 trees for 1 Million events

Boosting Parallelization
18

T
im

e
 (

s)

nThreads

T
im

e
 (

s)

nThreads

Update predictionsUpdate targets

● Again, there are three processes that loop over the events
1) Update the targets for the next tree for every event
2) Set optimum fits in terminal nodes

● Involves pushing the events into terminal node vectors, couldn't parallelize this
part

3) Update the predictions for every event based upon the previous tree
● 1&3 were parallelized by chunking the event loop

Active time over 10 trees for 1 Million events

Parallelization Conclusions
19

● Reduction in time of about 1.6x for with 4
cores

● 2.6x reduction for 16 cores
● Asymptotes at about 3x reduction

● Some of the intensive processes couldn't
be parallelized

● These required accessing the same
changing iterator at the same time

● Clever schemes exist to parallelize the tricky
push_back processes and further improve the
speed?

For 1 Million events*

nThreads

* Used 10 trees to study timing, but the time is linear in the
number of trees, so the net time reduction is the same
regardless of the number of trees

Conclusions
20

● Loss Function capabilities are abstracted, easy to add new ones in the
future

● Three available loss functions in the BDTs now, compared to just one
before

● Least Squares
● Absolute Deviation
● Huber

● Training has been parallelized with speed increases
● 1.6x for 4 CPUs, 1 Million events
● 2.6x for 16 CPUs, 1 Million events
● Some major processes remain unparallelized

● Would require accessing a changing iterator simultaneously
● Clever solutions may exist
● There are possible further gains in speed if so

● Evaluation time has been improved substantially for all regression
methods

● 460x reduction in time for 1 million events
● Improvement by bug removal

● Users Guide updated documenting new features
● Jupyter notebook created as a regression example to illustrate new

features interactively
● Loss Functions already available in ROOT (6.0.8), parallelization will be

available in a later release

Backup
21

● Histogramming the optimum split search

Histograms
22

Cut = bin3 = -0.5 Cut = bin3 = -0.5

● Error reduction calculation for a bin requires sum of bins on left side, and the
total sum

● Sum of bins on left side of the cut is the same as the value in bin = 3 of the
cumulative sum histogram, net sum is the last bin

● Simply make the cumulative sum histogram and search through the bins to
calculate the error reduction

● Need 3 histograms for the error reduction calculation
● Target
● Target squared
● Number of events

	Slide 1
	Slide 2
	Slide 18
	Slide 20
	Slide 21
	Slide 22

