Cardy Formula for SUSY Theories \& Localization
 Lorenzo Di Pietro Perimeter Institute 11/07/2017

CERN - Geometry of String and Gauge Theories
1407.6061 LD Zohar Komargodski 1512.03376 Arash Arabi. Ardehali 1610.00380 Masazumi Honda LD

Introduction

8. $\mathcal{N}=1, d=4$ theories with an unbroken R -symmetry

๕ Interesting observable: generalization of Witten index defined by quantization on compact space-like slice

Introduction

© SUSY theory on a curved space by coupling to background fields in the "new minimal" sugra multiplet

$$
\left(g_{\mu \nu}, A_{\mu}^{R}, V_{\mu}\right)
$$

Festuccia, Seiberg

Introduction

\mathcal{E} In particular: $\mathcal{M}_{3} \times \mathbb{R}$
\& \mathcal{M}_{3} Seifert manifold: two Killing spinors $\zeta, \tilde{\zeta} \quad K_{\mu}=\zeta \sigma_{\mu} \tilde{\zeta}$
© SUSY algebra: $\left\{\delta_{\zeta}, \delta_{\zeta}\right\}=i \delta_{K}$

$$
\left[H, \delta_{\zeta}\right]=\left[H, \delta_{\zeta}\right]=0 \quad \delta_{\zeta}^{2}=\delta_{\zeta}^{2}=0
$$

Klare, Tomasiello, Zaffaroni; Dumitrescu, Festuccia, Seiberg; Closset, Dumitrescu, Festuccia, Komargodski

Introduction

\& Generalization of Witten index: $\operatorname{Tr}_{\mathcal{H}\left(\mathcal{M}_{3}\right)}\left((-1)^{F} e^{-\beta H}\right)$ counting of short states
© Path integral on $\mathcal{M}_{3} \times S_{\beta}^{1}$ with periodic fermions

$$
Z_{\mathcal{M}_{3} \times S^{1}}(\beta)
$$

Introduction

© Independent on continuous coupling constant
§ RG invariant
© Application: Dualities

Introduction

©. Superconformal case

$$
\begin{aligned}
\mathcal{H}\left(S^{3}\right) & \equiv\{\mathcal{O}\} \\
Z_{S^{3} \times S^{1}} & =\sum_{\mathcal{O}}(-1)^{F} e^{-\beta(\Delta+1 / 2 R)}
\end{aligned}
$$

© Superconformal index: counts BPS operators

Kinney, Maldacena, Minwalla, Raju; Romelsberger

Introduction

© Our aim is to study the Cardy limit $\beta \rightarrow 0$ of these partition functions

8 It captures the density of short states with high energy/dimension
\& We can derive simple universal formulas

Introduction

8. $Z_{\mathcal{M}_{3} \times S^{1}}(\beta)$ for a gauge theory can be computed using localization
© One-loop det depends on holonomies around S^{1}
\& Additional parameters depending on \mathcal{M}_{3}

Introduction

© Explicit formulae for 1-loop determinants on $\mathcal{M}_{3}=S^{3} / \mathbb{Z}_{N}, S^{1} \times \Sigma_{g}$
Benini, Nishioka, Yamazaki; Razamat, Willet; Closset, Shamir; Assel, Cassani, Martelli; Nishioka, Yaakov; Honda, Yoshida; Benini, Zaffaroni
8. Picking correct integration contour can be subtle Benini, Eager, Hori, Tachikawa

Introduction

8. Effective action for the holonomies in the limit $\beta \rightarrow 0$

- It can be derived on general \mathcal{M}_{3}, depends on it in a simple way

Result

$$
\begin{aligned}
& \text { ®. In the limit } \beta \rightarrow 0 \\
& Z_{S^{1} \times \mathcal{M}_{3}} \underset{\beta \rightarrow 0}{ } e^{-\frac{\pi^{2} \operatorname{Tr}(R) \mathcal{M}_{3}}{12 \beta}} \int d^{r} a e^{-\dot{V}_{3} \text { eff }(a)+\ldots} \\
& \text { "potential" for the holonomies }
\end{aligned}
$$

Result

$$
\begin{aligned}
& V_{\mathcal{M}_{3}}^{\mathrm{eff}}(a)=-\sum_{f} \sum_{\rho_{f} \in \mathfrak{R}_{f}}\left[\frac{\pi^{3} i A_{\mathcal{M}_{3}}}{6 \beta^{2}} \kappa\left(\rho_{f} \cdot a\right)\right. \\
& \left.+\frac{\pi^{2}\left(R_{f} L_{\mathcal{M}_{3}}-\rho_{f} \cdot l_{\mathcal{M}_{3}}\right)}{2 \beta} \vartheta\left(\rho_{f} \cdot a\right)\right] \\
& \kappa(x) \equiv\{x\}(1-\{x\})(1-2\{x\}) \\
& \vartheta(x) \equiv\{x\}(1-\{x\})
\end{aligned}
$$

$A_{\mathcal{M}_{3}}, L_{\mathcal{M}_{3}}, l_{\mathcal{M}_{3}}^{i}$: integrals of local densities in the background/gauge fields

Result

8 It was derived by Ardehali for $\mathcal{M}_{3}=S^{3}$ using expression of 1 -loop determinants
\& Alternative approach (effective 3d theory) that is easy to generalize. No need to know full determinant in advance

Example

SU(2) with fundamental flavors

Example

ISS model: SU(2) + quadruplet Intriligator, Seiberg, Shenker

Example

SU(3) SQCD (from Ardehali)

Result

* Limit of the integral?
©. When $V_{\mathcal{M}_{3}}^{\text {eff }}\left(a_{\text {min }}\right)=0$

$$
Z_{S^{1} \times \mathcal{M}_{3}}^{\underset{\beta \rightarrow 0}{ }} e^{-\frac{\pi^{2} \operatorname{Tr}(R) L_{\mathcal{M}_{3}}}{12 \beta}+\cdots} \times Z_{\mathcal{M}_{3}}
$$

Asymptotics fixed by gravitational anomalies

LD, Komargodski

Result

8. What just said applies if $V_{\mathcal{M}_{3}}^{\mathrm{eff}}\left(a_{\text {min }}\right)=0$
8 Additional contribution for cases with $V_{\mathcal{M}_{3}}^{\text {eff }}\left(a_{\text {min }}\right)<0$
9. Examples known so far: 'misleading anomaly matching', all have $a-c>0$

Result

(3 Theories with $V_{\mathcal{M}_{3}}^{\text {eff }}\left(a_{\text {min }}\right)<0$
8 In this case the leading asymptotics of the partition function rather than

$$
Z_{S^{1} \times \mathcal{M}_{3}} \underset{\beta \rightarrow 0}{\longrightarrow} e^{-\frac{\pi^{2} \operatorname{Tr}(R) L \mathcal{M}_{3}}{12 \beta}+\ldots} \times Z_{\mathcal{M}_{3}}
$$

is
$Z_{S^{1}} \times \mathcal{M}_{3} \underset{\beta \rightarrow 0}{ } e^{-\frac{\pi^{2} \operatorname{Tr}(R) L \mathcal{M}_{3}}{12 \beta}}+V_{\mathcal{M}_{3}}^{\text {eff }}\left(a_{\min }\right)+\cdots \times Y_{\mathcal{M}_{3}}$
Physical interpretation?

Results

8. $V_{M_{3}}^{\text {eff }}\left(a_{\text {min }}\right)<0$: one-loop determinant of $Z_{\mathcal{M}_{3}}$ grows exp at infinity
\& This falsifies an assumption in LD, Komargodski
\& We lack a more physical characterization of theories with this behavior

Derivation

- Couple the theory to bkg metric and G gauge field
$g_{M N} d X^{M} d X^{N}=\left(d X^{4}+c_{\mu} d x^{\mu}\right)^{2}+h_{\mu \nu} d x^{\mu} d x^{\nu}$
$A_{M} d X^{M}=\left(d X^{4}+c_{\mu} d x^{\mu}\right) A_{4}+\mathcal{A}_{\mu} d x^{\mu}$
They are part of supersymmetric multiplets

Derivation

s. In a weakly coupled point: KK fermions on M_{3}

$$
\begin{aligned}
M_{n}=\frac{2 \pi}{\beta}\left(n+\rho_{f} \cdot \dot{a}\right) & a=\frac{\beta A_{4}}{2 \pi} \\
& \underset{\mathrm{AK}}{ } \mathrm{KK}
\end{aligned}
$$

We take $\beta \rightarrow 0$ with a finite

Derivation

© Formula in three steps:

1) Integrate out
2) Supersymmetrize
3) Evaluate on SUSY
configuration

Derivation

© 1) Integrate out:
Mixed Chern-Simons terms between gauge, R-symmetry, KK.
Coefficient $=$ infinite sum over KK tower, zeta-function regularization

$$
S_{k}\left(s, \rho_{f} \cdot a\right)=\sum_{n \in \mathbb{Z}} \operatorname{sgn}\left(n+\rho_{f} \cdot a\right) n^{k-1}\left|n+\rho_{f} \cdot a\right|^{-s}
$$

Derivation

\& 2) Supersymmetrize:
Chern-Simons terms completed to full supersymmetric Lagrangians.

Key: these Lagrangian contains term that are activated on the background.

Derivation

8. For instance, R-KK:

$$
i \epsilon^{\mu \nu \rho} \mathcal{A}^{(R) \mu} \partial_{\nu} c_{\rho}-\frac{1}{2} f_{\mu \nu}^{2}-\frac{1}{2}\left(A_{4}^{(R)}\right)^{2}+\frac{1}{4} R
$$

Integrated over \mathcal{M}_{3} defines the length $L_{\mathcal{M}_{3}}$.

Derivation

\& 3) Evaluate on the SUSY configuration of gauge fields:
$\left(\mathcal{A}_{\mu}^{i}, \sigma^{i}, \mathcal{D}^{i}\right)$ with $\left\{\begin{array}{ll}\sigma & \equiv A_{4} \\ \mathcal{A}_{\mu} & \equiv A_{\mu}-A_{4} c_{\mu} \\ \mathcal{D} & \equiv D-A_{4} A_{4}^{(R)}\end{array} A_{4}^{i}=\frac{2 \pi}{\beta} a^{i} \quad l\right.$
A_{μ}^{i}, D^{i} depend on \mathcal{M}_{3}.
They enter the density $l_{\mathcal{M}_{3}}^{i}$.

Derivation

8. For instance, plugging in the gauge-R:

$$
\begin{aligned}
\rightarrow & \frac{2 \pi}{\beta}\left(\rho_{f} \cdot a\right) \times \\
& \left(i \epsilon^{\mu \nu \rho} \mathcal{A}^{(R) \mu} \partial_{\nu} c_{\rho}-\frac{1}{2} f_{\mu \nu}^{2}-\frac{1}{2}\left(A_{4}^{(R)}\right)^{2}+\frac{1}{4} R\right)
\end{aligned}
$$

Derivation

8. The a-dependent coefficients combine to give

$$
\begin{aligned}
& V_{\mathcal{M}_{3}}^{\mathrm{eff}}(a)=-\sum_{f,} \sum_{\rho_{f} \in \mathfrak{R}_{f}}\left[\frac{\pi^{3} i A_{\mathcal{M}_{3}}}{6 \beta^{2}} \kappa\left(\rho_{f} \cdot a\right)\right. \\
& \left.+\frac{\pi^{2}\left(R_{f} L_{\mathcal{M}_{3}}-\rho_{f} \cdot l_{\mathcal{M}_{3}}\right)}{2 \beta} \vartheta\left(\rho_{f} \cdot a\right)\right] \\
& \kappa(x) \equiv\{x\}(1-\{x\})(1-2\{x\}) \\
& \vartheta(x) \equiv\{x\}(1-\{x\})
\end{aligned}
$$

Derivation

5 Integrate/sum over the conf of the dynamical gauge fields
\& Finally we get
$Z_{S^{1} \times \mathcal{M}_{3}} \underset{\beta \rightarrow 0}{\longrightarrow} e^{-\frac{\pi^{2} \operatorname{Tr}(R) L \mathcal{M}_{3}}{12 \beta}} \int d^{r} a e^{-V_{\mathcal{M}_{3}}^{\text {eff }}(a)+\ldots}$
a^{i}-independent prefactor

Applications

8 It matches with the limit of the 1-loop determinants on
$\mathcal{M}_{3}=S^{3} / \mathbb{Z}_{N}, S^{1} \times \Sigma_{g}$
8. More general backgrounds: \mathcal{M}_{3} can also be a non-trivial S^{1} fibration over a Riemann surface with $g>1$

> Closset, Kim, Willett

Applications

- Superconformal case

$$
\operatorname{Tr} R \sim a-c
$$

$\sum_{\mathcal{O}}(-1)^{F} e^{-\beta\left(\Delta+\frac{R}{2}\right)} \underset{\beta \rightarrow 0}{\simeq} e^{-\frac{16 \pi^{2}}{3}(a-c) \frac{r_{3}}{\beta}}$
Similar to Cardy formula in
Id CFT

$$
Z_{T^{2}}=\sum_{\mathcal{O}} e^{-\beta \Delta} \underset{\beta \rightarrow 0}{\simeq} e^{\frac{\pi^{2}}{3} c \frac{r_{1}}{\beta}}
$$

Applications

Ξ Usually: (a, c) via correlators of the stressenergy tensor/anomalies
© Formula for $a-c$ via the sum over BPS operators

Ardehali, Liu, Szepietowski Beccaria, Tseytlin

Applications

8 Theories with extended SUSY $\mathrm{N}=2$ in $4 d$ e $(2,0)$ in $6 d$
8. With one condition on the fugacities, more SUSY: Schur Index
\& Only 1 parameter left
\& Related to the character of Id chiral algebras
Been, Lemos, Liendo, Peelaers, Rastelli

$$
\mathcal{I}(p, q, y)=\operatorname{Tr}\left[(-1)^{F} p^{j_{2}-j_{1}+\frac{R}{2}} q^{j_{2}+j_{1}+\frac{R}{2}} y^{f}\right]
$$

$$
R=\frac{4}{3}\left(I_{3}-\frac{r}{2}\right), f=I_{3}+r
$$

8 4d Schur Index $p=(p q)^{\frac{2}{3}} y \equiv e^{-\beta \omega}$

8 Dependence on q drops
8. We obtain $\log \mathcal{I}^{\text {Schur }} \underset{\beta \rightarrow 0}{\sim}-\frac{8 \pi^{2}}{\beta \omega}(a-c)$ Agrees with the character of the chiral algebra. Different info than central charge: $c^{2 d}=-c^{4 d}$

Ardehali; Rastelli

$$
\begin{aligned}
\mathcal{I}(p, q, t, y) & =\operatorname{Tr}\left[(-1)^{F} p^{\mathcal{R}+h_{1}} q^{\mathcal{R}+h_{2}} t^{\mathcal{R}-h_{3}} y^{f}\right] \\
\mathcal{R} & =\frac{R+r}{2}, \quad f=R-r
\end{aligned}
$$

8. 6d Schur Index $y \sqrt{\frac{q t}{p}}=1, p \equiv e^{-\beta \omega}$

8 Dependence on q, t drops
8 We obtain $\log \mathcal{I}^{\text {Schur }} \underset{\beta \rightarrow 0}{\sim} \frac{\pi r_{\mathfrak{g}}}{12 \omega}\left(\frac{2 \pi}{\beta}\right)$
β^{-3} cancels. Agrees with the proposed correspondence to $\mathcal{W}_{\mathfrak{g}}$ chiral algebra.

Outlook

\& Characterize theories with $V_{\mathcal{M}_{s}}^{\mathrm{eff}_{\mathrm{s}}}\left(a_{\text {min }}\right)<0$, sign of $a-c$?
\& Physical interpretation of Cards behavior for $V_{M_{3}}^{\text {eff }}\left(a_{\min }\right)<0$
\& Relation to the bound on the gap for holographic theories?

$$
\Delta_{\text {gap }}^{2} \leq\left|\frac{c}{c-a}\right| \begin{aligned}
& \text { Camanho, Edelstein }, \\
& \text { Maldacena, Zhiboedov }
\end{aligned}
$$

Thank you!

