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Witten Index and Deformation

• D-brane bound state problems via Witten index of N=4 QMs 
 
 

• As an integral quantity,  it is insensitive to small deformations 
but only to small deformations.  

• E.g. Wall-crossing phenomena [Denef `02] 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Twisted Partition Function

• A gapless asymptotic flat direction is a real trouble, unlike a 
gapped one, which can be a nuisance.

• Non-compact dynamics is of the former type.

• To regularize this IR issue, turn on chemical potentials and 
compute the twisted partition function:  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The Formula for O  
Localization of d=1 N=4 GLSM

• The twisted partition function can be computed as 
 
                                                
 
                             are the zero-modes of the Cartan 
 
                                   gets a factor from vectors and matters  
 
        and    denote FI (if present) and auxiliary parameters  
 
     JK-Res is the sum of  “Jeffrey-Kirwan residues” over singularities

⌦
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via     ?

• The two objects agree for a compact dynamics, but they do 
not for a non-compact dynamics.

• Question #1:  are these two related at all, and if so, can we 
extract one from the other?  
 
   Natural to think the flavor-singlet sector of a twisted partition function may 
reduce to the Witten index.  Would this be true?  

• Question #2:  what if there remain asymptotic directions that 
cannot be controlled by the flavor symmetry GF?
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• The free theory w/ a single chiral has

• Flavor expansions 
 
 

• One may attempt to interpret each expansion as suggesting a 
single ground state. 

• R-charges disagree. Further, the true count must be zero. 
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• U(1) theory w/ N positive and K negative unit-charged chirals

• Non-compact directions controlled by U(1) flavor symmetry,  
under which all the chirals are positively charged. 

• Flavor expansions

• The singlet sectors do not agree, yet again. 
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• The L2 cohomology for asymptotically conical geometry  
[Hausel, Hunsicker, Mazzero `02]  
 
 
 

• For the U(1) GLSM theory, one obtains

Hn
L2(M) =

8
><

>:

Hn(M, @M) if n < d (= 1
2dimRM)

Im(Hn(M, @M) ! Hn(M)) if n = d

Hn(M) if n > d

L2

U(1) GLSM
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) if N > K

0 otherwise

leading to



• Observation: neither of the two flavor-neutral sectors is the 
correct index but the intersection is.  
 
 
 
 
 
 
 
 
                Would this work for other theories?  
 
   Woud things get better with more supersymmetries?  

Recovering the Witten Index?
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• N=4,8, and 16 Pure SYM QMs with G=ABCDEFG  
 
 
 
 
 
 

• IIA/M duality: D0 bound state problem for the case of G=A  
[Yi `97] [Sethi, Stern `97] [Green, Gutperle `97] [Moore, Nekrasov, Shatashvili `98]
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• Again, the object in question is the twisted partition function.

• With gapless directions from a chiral:  
 

Chemical potential could lift all of them. 

• With gapless directions from a vector:  
 

Further subtleties arise as the flat directions cannot be lifted 
completely. 

• What does the residue formula mean then?

Non-compact  Vector
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• If non-compact vectors cannot be controled by any means, one 
must expect   -dependence in  

• Absence of such a   -dependence means that a certain limit has 
been taken, and it must be the bulk index,

• Recall that the Witten index can split as  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Pure Yang-Mills 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• Upon localization computation, the twisted partition function 
can be reorganized as 
 
 
 
where the sum is only over elliptic Weyl elements.  

• An elliptic Weyl element            is defined by absence of a unit 
eigenvalue, i.e.,                       .
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• Upon localization computation, the twisted partition function 
can be reorganized as 
 
 
 
where the sum is only over the elliptic Weyl elements.  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[Yi `97] [Green, Gutperle `97] 

⌦G = IG
bulk = ��IG = ��IU(1)r/W = IU(1)r/W

bulk



• For G=SU(p), one can see that                                  

• Such an expression appears naturally in the wall-crossing 
algebra and leads to rational invariant.  
 
 We will see how this arises by computing the twisted partition function of non-
primitive quiver theories.  
 
 For a general gauge group G, one may attempt to use               to form an 
analogous object.  
 

 In particular, for orientifold theories one could uniquely define the quantity 

N=4 Pure Yang-Mills 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• The twisted partition function computation leads to 
 

• The above gives the N=8 equivariant version of the asymptotic 
contribution:
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• The N=16 equivariant version of the asymptotic contribution 
is as straightforward:  
 
 
 
 
 
 

• With N=16, we do expect a bound state, however.  

N=16 Pure Yang-Mills
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• For G=SU(p), we can compute the twisted partition function 
and express it as              
                      
 

• This can be thought of as the equivariant version for 
 
 
 
showing that                 for all p.
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• One is naturally led to try giving a similar interpretation for 
other gauge groups.  

• Presuming an analogous partial-bound-state structure, we can 
read off the true Witten index by decomposing the twisted 
partition function.          

N=16 Pure Yang-Mills 
General G
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Witten Index obtained via twisted partition function! 



It is crucial that we have fully equivariant indices.
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with ISU(N)
N=16 = 1 for all N . The insight that anticipated and explained this formula,

originates in Ref. [39]. This intriguing structure of the twisted partition function, or
the bulk part of the Witten index, persists well beyond pure Yang-Mills theories, as
will be explained in the next section. Here it su�ces to note that, once we understand
these structures of fractional ⌦’s, true and integral L2 index can be read o↵ easily
from ⌦ = Ibulk, without having to deal with the very subtle boundary contribution
�I.

We repeated the same exercise for other simple gauge groups also. The fully
equivariant ⌦G

N=16’s are in Eq. (4.27) below, while the table lists the numerical limits
for N = 4, 8, 16 for easy comparisons among various theories:

N = 4, 8 N = 16
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35
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N (y, x)

����
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cf. 
[Moore, Nekrasov, Shatashvili `98] 
[Kac, Smilga `99] 
[Staudacher `00] 
[Pestun `02]
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N=16 Pure Yang-Mills 
Bound states of D-particles via M/IIA duality

S1 ⇥ R9,1 S1 ⇥ R0,1 ⇥ R9/Z2
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M on

IIA on

M-theory origin of IIA forming an infinite tower of multi D-particle bound states

S1 ⇥ R9,1 S1 ⇥ R0,1 ⇥ R9/Z2

[Witten `95]
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• IIA must remember the M theory 
origin by forming an infinite tower of 
D-particle bound states moving freely 
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• IIA must remember the M theory 
origin by forming an infinite tower of 
D-particle bound states along fixed 
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• BPS states as D-branes wrapping various cycles.

• Low-energy D-brane dynamics by a quiver gauge theory.   

• E.g. IIB on CY3:  one-particle BPS states seen as a D3-brane  
                        wrapping a SLag.  
      D=0+1 quiver theory for particle-like BPS states in D=3+1  [Denef `02]!

BPS Quivers
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• BPS objects (dis)appear as the relevant CY geometry is 
deformed across a wall

Wall Crossing 
Phenomenon
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Wall Crossing 
Algebra and Formula
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� = (e,m) 2 Zr ⇥ Zr

[V� , V�0 ] = (�1)h�,�
0i h�, �0iV�+�0 where h�, �0i = e ·m0 �m · e0

[Kontsevich, Soibelman `08] 
[Gaiotto, Moore, Neitzke `08] 
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• Rational invariants naturally appear also in susy vacuum 
counting of quiver QM
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• Reproduces the index (       ) for primitive cases

• Proposed to be the twisted partition function in general  
 

• Witten index can thus be extracted from the localization even 
for nonprimitive quivers and their threshold bound states
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Nonprimitive Dynamics 
Example:  n-Kronecker quivers
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Nonprimitive Dynamics 
Example:  3-node chain quivers
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Nonprimitive Dynamics 
Example:  triangle quivers
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• Witten index(   ) of susy QMs can address bound state problems. 

• For non-compact dynamics, one may systematically compute the 
twisted partition function(   ) instead. 

• Twisted partition functions differ from the true indices in general.

• With a chiral flat direction:  
-      has an intimate connection with    .

• With a vector flat direction:  
-      naturally receives various rational contributions.  
- one can extract      from there to address threshold bound states.

• Rational invariants of orientifolded theories have been suggested 
and their role in wall-crossing algebra is to be explored. 

• Careful treatment of non-compact dynamics might also shed light 
on the black hole microstates. 

Summary and Outlook
I
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