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• Consider an                  theory on on       with R-symmetry                                            

• It can be put on a      by [Witten 91]

                                         A-twist

                                         B-twist

• We can insert the half-BPS operators          defined by 

which form a (twisted) chiral ring:                            .

• The (A-) B-twisted theory only depends on the (twisted) F-term. 

N = (2, 2)

⌃g

U(1)V ⇥ U(1)A

U(1)EB = U(1)E + U(1)A

U(1)EA = U(1)E + U(1)V

{ eQ+,�A} = {Q�,�A} = 0

{ eQ+,�B} = { eQ�,�B} = 0
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A-twist in Higer Dimensions

• Uplifting A-twisted theory to 3d and 4d

• 3d N=2 and 4d N=1 theories can be viewed as A-twisted theories with 
infinitely many KK modes.

• This point of view allows us to study higher dimensional theories defined on a 
large class of manifolds with different geometries.

• The twisted chiral rings in 2d uplift to the co-dimension two defects in higher 
dimensions. It provides a natural framework to study the algebra of these 
extended operators.

2d N = (2, 2) �!
S1

3d N = 2 �!
S1

4d N = 1



When can we define 3d N=2 theories on a curved space        ?

• When we have           , we preserve two supersymmetries if        has a           
U(1) isometry [Closset-Dumitrescu-Festuccia-Komargodski 13]

• These manifolds are       bundle over an orbifold. In this talk, we focus on a 
class of such manifolds with smooth base, labeled by two integers: 

  

with metric                                                        ,

This theory can be understood as a pull-back of the A-twist along the base     .  

Three-dimensional SUSY Background
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• In this talk, we will write down the supersymmetric partition function

     of 3d N=2 theories

• This can be easily uplifted to 4d N=1 theories on

With the SL(2,Z) action on the torus, it defines a generalized index

                                                   ,

                        

This quantity generalize the superconformal index

at            limit. [Romelsberger 05]

Partition Functions and Indices
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• Chern-Simons theory on                 : Verlinde formula [Witten 86][Verlinde 88]
[Blau-Thompson 93]

•            [Kapustin-Willett-Yaakov 09]

• Topologically twisted indices                                            [Closset-HK 16]
[Benini-Zaffaroni 15,16] 

• Superconformal index                     [Romelsberger 05]

This framework will allow us to write down these results in a uniform way and 
show how they are related to each other.

           background is also considered by [Ohta-Yoshida 13][Nishioka-Yaakov 14]. 
The results do not agree with ours. For CS theory, the result reduces to the 
formula computed in [Blau-Thompson 06][Kallen 11] 

      Special Examples of                        Z[Mg,p (⇥S1)]

⌃g ⇥ S1

Z[S3]

Z[⌃g ⇥ S1], Z[⌃g ⇥ T 2]

Z[S3 ⇥ S1]

Mg,p



Two-dimensional GLSM

After A-twisting,

• Vector multiplet                                                 with gauge group 

• Chiral multiplet                          in a representation      of 

• Superpotential 

• Twisted Superpotential            , 

     including FI term 

Let’s consider the Coulomb branch where we have  

G
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Coulomb Branch of GLSM

• Coulomb branch is parametrized by complex scalars                        . 

     In addition, we have a quantized flux                                          .     

• In this background, the low energy effective action can be written as

Note that it only depends on the twisted effective superpotential on       :

and the dilaton effective action:

which tells us how the theory couples to the non-trivial curvature. [Witten 93]
[Nekrasov-Shatashvilli 14]
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Coulomb Branch and Vacua

• The quantum vacua of this theory is given by

which we call the Bethe equation. For                   theory, it gives the Bethe equation 
for the corresponding integrable system (XXX spin-chain). [Nekrasov-Shatashvilli 09]

• For           , the Coulomb branch has a singularity where the non-abelian gauge 
symmetry enhances. We will discard these solutions fixed by the Weyl symmetry.

• Example:                     with     fundamental multiplets:

exp

✓
2⇡i

@W
@�a

◆
= 1, �a 6= �b (a 6= b)

N = (2, 2)

g > 0

G = U(N) L

LY

i=1

�a �mi + z/2

�a �mi � z/2
= e2⇡it

Y

j 6=i

�i � �j + z

�i � �j � z



Computation of the partition function

Let’s go back to the effective action

Integrating out the zero modes for              and evaluating at the solution 
of the Bethe equation, we get 

This result was first obtained by [Vafa 91] for Landau-Ginzburg model, and 
later by [Melnikov-Plesser 05] for 2d GLSM with massive vacua. When           
.        , the full path integral derivation is given by [Closset-Cremonesi-Park 
15] with Omega deformation.
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Handle-gluing Operator

• Add one handle 

H=

g ! g + 1
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• Add one unit of flux 

Flux Operator
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Correlation Functions

• One can insert a local BPS operator

     It follows that the correlation function satisfy

                                                                          

     which gives the quantum chiral ring relation. 

• After the 3d uplift, this idea can be used to find the Wilson loop algebra and the 
duality actions on the loop operators.
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• Consider the 3d N=2 theories on a circle. The classical coulomb branch is 
parameterized by 

• 3d twisted effective superpotential can be obtained by summing over all 
Kaluza-Klein modes. We have

•  Note that         suffers from the branch cut ambiguity

• The dilaton effective action is    
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             3d Theories on

• With this information, we can write down the full correlation function for the 
Wilson loops in               :

with
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               3d Theories on
• Let us consider the manifold with a non-trivial fiberation 

 with metric                                                      , 

• In the two-dimensional point of view, this theory has an additional flavour 
symmetry, which is the               . We can turn on the background twisted 
vector multiplet for this symmetry, whose lowest component is       . The 
twisted mass is given by

• We will call the flux operator for                the Fibering operator:
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• More explicitly, 

• A chiral multiplet contributes

to     . The fibering operator satisfies the difference equation

• Now we can write down the full           partition function with Wilson loops:
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•                is the flux for the torsion subgroup  

•      partition function [Kapustin-Willett-Yaakov 09] can be rewritten as

                                                                                      

   an operator insertion of the twisted index of [Benini-Zaffaroni 15]
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    Path Integral Derivation of
• We can compute the same quantity by honest localization computation of the 

UV lagrangian. As a result, we get an integral expression of the               :

• Note that for p > 0,                                 is valued in a complex plane      . 
This is due to the fact that the integrand is invariant under the following large 
gauge transformation:

                                                                                  

This can be gauge-fixed by declaring               and integrating over whole 
complex plane of             . 

•       is the real r-dimensional contour which is given by the “JK-residue 
integral” similarly to [Benini-Hori-Eager-Tachikawa 13][Hori-HK-Yi 14]. 
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• For           , by a judicious choice of   , the contour      is continuously 
deformed to a real line integral under a favourable condition. Especially for           
.        , this agrees with the usual expression for the three-sphere partition 
function computed by [Kapustin-Willett-Yaakov 09]  

• When                              , R-symmetry bundle trivializes. For such cases, 
we can relax the integrality condition for the R-charge and continuously 
vary it. [Jafferis 10][Hama-Hosomich-Lee 10]
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p = 1

g � 1 = 0 mod p



• Let us consider the 1/2-BPS Wilson loops with insertion

 

• Classically, the algebra of the Wilson loops are given by

• The quantum algebra is conjectured and tested for a few examples in [Kapustin-
Willett 13]. The proof directly follows from our formula: 

which tells us that the quantum algebra is

where       is the ideal generated by           with                             . [Closset-HK 16]
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• Seiberg-like dualities               are encoded in the Bethe equations. For 
example, for the Aharony duality, we have

• It gives a one-to-one map to the dual vacua  

• The statement of the dualities for all       :

 

     for all the solution sets             .  

• We have proved the relations for          . 

•               follows from the identity of the dilogarithms proved in [Ray 91]

3d Dualities
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Duality Action on Wilson Line
• For the BPS Wilson loops, the statement of the duality is


• This relation provides a systematic way of obtaining the representation of the dual 
BPS Wilson loops. [Closset-HK 16]


• For example,              


One can use this relation iteratively to write down the dual Wilson loop:

hW (x̂)i = hW ({x̂D})iD

G = U(3), Nf = 5

· · ·

, yi = 1



• All of the discussion so far can be generalized to 4d N=1 theories on four-
manifolds labeled by three integers             . [Closset-HK-Willett]

which is realized by turning on the graviphoton background

for                                  symmetry.

• The Coulomb branch variable is                       with

• The twisted effective superpotential can be computed by summing over two 
KK towers. The chiral multiplet contributes

             4d Theories on Mg,p1,p2
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•       can be rewritten as

• Following the same logic, the partition function can be written as

• The Bethe equation in 4d is an elliptic equation. For example, we have

for the SQCD with Sp gauge group. The well-definedness of this equation comes 
from the gauge anomaly cancellation condition. 

          Partition Function on Mg,p1,p2
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• Note that the new formula is written in terms of        valued in tori, it has a 
well defined modular transformation under              :

• This is distinguished feature compared to the usual superconformal index, 
which only had a real holonomy variable.
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• Each contribution of the partition function transforms nicely under the 
modular transformation (                 ,                                ):    

                 where 

are the anomaly coefficients of the theory. Since they vanish for the gauge 
fugacity, the               transformation of the full partition function is well 
defined, and only depends on the t’Hooft anomaly of the theory. 

• With this transformation, one can always map                          which defines 
an index on                  .   

Modular Transformation
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        Integral formula for

• We can derive the same quantity by a direct localization computation. The 
final formula reads

• For                   , we can show that it reduces to the SCI in the limit          
with a unit circle contour integral.
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• For                  , the partition function can be written as

where            is generalized index,

and            is the supersymmetric Casimir energy [Lorenzen-Martelli 15][Assel-
Cassini-Di Pietro-Komargodski-Lorenzen-Martelli 15]. We find

Note that it is determined by anomalies of the theory. For the three sphere case, it 
agrees with the observation in [Bobev-Bullimore-Kim 15]

Casimir Energy              
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• We can study the expression for the            limit, which corresponds to the 
three-dimensional limit. We first take the modular transformation then take 
the            limit. We find a universal expression

• This agrees with the formula 

given by [Di Pietro-Komargodski 14].
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Witten Index of SQCD
•                            partition function computes the Witten index of the theory. 

The expression reduces to

• The number of solutions of the Bethe equation gives the Witten index.

• For SQCD with                                   flavours, we find

• For SQCD with                              flavours, we conjecture

at generic fugacities. This formula agrees with the Seiberg dualities. 
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• We derived generalized supersymmetric partition functions of 3d N=2 theories 
and 4d N=1 theories, which uncover the relation between correlation functions 
on manifolds with different topologies.

• In the A-model point of view, the expression can be written as a sum over the 
Bethe vacua.

• The localization computation gives an integral expression, which turns out to 
be equivalent to the first expression.

• In 3d, it provides a useful tool to study the dualities and the algebra of the half-
BPS Wilson loops.

• In 4d, the index has a well-defined modular transformation, Casimir energy and 
Cardy formula determined by the anomalies of the theory.

• We can compute the Witten index for 3d CS-YM-Matter theory and 4d SQCD, 
and checked that the Seiberg dualities holds for all g,p.   

Summary



• What is the algebra of the surface operators in 4d? [work in progress]

• Relation between Casimir energy and anomaly, phases of the 4d partition 
functions [work in progress]

• Can we generalize this story to the most general Seifert manifold? 

• Application to the 3d-3d correspondence? 

• How can we introduce the squashing (for genus 0) in this story?

• What is the Hilbert space interpretation of the generalized index?

Future Directions


