SUSY Partition Functions and Higher Dimensional A-twist

Heeyeon Kim

Perimeter Institute for Theoretical Physics

Based on
arXiv:1605.06531 with Cyril Closset
arXiv:1701.03171 with Cyril Closset and Brian Willett
arXiv:1707.nnnnn with Cyril Closset and Brian Willett

A-twist in Two Dimensions

- Consider an $\mathcal{N}=(2,2)$ theory on on \mathbf{R}^{2} with R-symmetry $U(1)_{V} \times U(1)_{A}$
- It can be put on a Σ_{g} by [Witten 91]

$$
\begin{aligned}
& U(1)_{E_{A}}=U(1)_{E}+U(1)_{V} \text { A-twist } \\
& U(1)_{E_{B}}=U(1)_{E}+U(1)_{A} \text { B-twist }
\end{aligned}
$$

- We can insert the half-BPS operators $\phi_{A, B}$ defined by

$$
\begin{aligned}
& \left\{\widetilde{\mathcal{Q}}_{+}, \phi_{A}\right\}=\left\{\mathcal{Q}_{-}, \phi_{A}\right\}=0 \\
& \left\{\widetilde{\mathcal{Q}}_{+}, \phi_{B}\right\}=\left\{\widetilde{\mathcal{Q}}_{-}, \phi_{B}\right\}=0
\end{aligned}
$$

which form a (twisted) chiral ring: $\phi_{i} \phi_{j}=C_{i j}{ }^{k} \phi_{k}$.

- The (A-) B-twisted theory only depends on the (twisted) F-term.

A-twist in Higer Dimensions

- Uplifting A-twisted theory to 3d and 4d

$$
2 d \mathcal{N}=(2,2) \underset{S^{1}}{\longrightarrow} 3 d \mathcal{N}=2 \underset{S^{1}}{\longrightarrow} 4 d \mathcal{N}=1
$$

- $3 d N=2$ and $4 d N=1$ theories can be viewed as A-twisted theories with infinitely many KK modes.
- This point of view allows us to study higher dimensional theories defined on a large class of manifolds with different geometries.
- The twisted chiral rings in 2d uplift to the co-dimension two defects in higher dimensions. It provides a natural framework to study the algebra of these extended operators.

Three-dimensional SUSY Background

When can we define $3 d N=2$ theories on a curved space \mathcal{M}_{3} ?

- When we have $U(1)_{R}$, we preserve two supersymmetries if \mathcal{M}_{3} has a $U(1)$ isometry [Closset-Dumitrescu-Festuccia-Komargodski 13]

$$
K^{\mu}=\zeta \sigma^{\mu} \widetilde{\zeta}
$$

- These manifolds are S^{1} bundle over an orbifold. In this talk, we focus on a class of such manifolds with smooth base, labeled by two integers:

$$
S^{1} \longrightarrow \mathcal{M}_{g, p} \longrightarrow \Sigma_{g}
$$

with metric $d s^{2}=(d \phi+C(z, \bar{z}))^{2}+2 g_{z \bar{z}} d z d \bar{z}$,

$$
\frac{1}{2 \pi} \int_{\Sigma_{g}} d C=p \in \mathbb{Z}
$$

This theory can be understood as a pull-back of the A-twist along the base Σ_{g}.

Partition Functions and Indices

- In this talk, we will write down the supersymmetric partition function

$$
Z\left[\mathcal{M}_{g, p}\right] \text { of } 3 d N=2 \text { theories }
$$

- This can be easily uplifted to $4 d N=1$ theories on $\mathcal{M}_{g, p_{1}, p_{2}}$

$$
T^{2} \longrightarrow \mathcal{M}_{g, p_{1}, p_{2}} \rightarrow \Sigma_{g}
$$

With the $S L(2, Z)$ action on the torus, it defines a generalized index

$$
\begin{gathered}
Z\left[\mathcal{M}_{g, p} \times S^{1}\right]=e^{-\beta E_{\mathcal{M}_{g, p}}}\left[\left[\mathcal{M}_{g, p}\right]\right. \\
\text { where } I\left[\mathcal{M}_{g, p}\right]=\operatorname{Tr}_{\mathcal{M}_{g, p}}\left[(-1)^{F} q^{2 J+R} \prod_{\alpha} y_{\alpha}^{Q^{\alpha}}\right]
\end{gathered}
$$

This quantity generalize the superconformal index

$$
I_{S^{3}}(p, q, y)=\operatorname{Tr}_{S^{3}}\left[(-1)^{F} p^{J_{3}+J_{3}^{\prime}+\frac{1}{2} R} q^{J_{3}-J_{3}^{\prime}+\frac{1}{2} R} \prod_{\alpha} y_{\alpha}^{Q^{\alpha}}\right]
$$

at $p=q$ limit. [RomeIsberger 05]

Special Examples of $Z\left[\mathcal{M}_{g, p}\left(\times S^{1}\right)\right]$

- Chern-Simons theory on $\Sigma_{g} \times S^{1}$: Verlinde formula [Witten 86][Verlinde 88] [Blau-Thompson 93]
- $Z\left[S^{3}\right][$ Kapustin-Willett-Yaakov 09]
- Topologically twisted indices $Z\left[\Sigma_{g} \times S^{1}\right], Z\left[\Sigma_{g} \times T^{2}\right]$ [Closset-HK 16] [Benini-Zaffaroni 15,16]
- Superconformal index $Z\left[S^{3} \times S^{1}\right]$ [Romelsberger 05]

This framework will allow us to write down these results in a uniform way and show how they are related to each other.
$\mathcal{M}_{g, p}$ background is also considered by [Ohta-Yoshida 13][Nishioka-Yaakov 14]. The results do not agree with ours. For CS theory, the result reduces to the formula computed in [Blau-Thompson 06][Kallen 11]

Two-dimensional GLSM

After A-twisting,

- Vector multiplet $\mathcal{V}=\left(\sigma, \lambda, \tilde{\lambda}, \Lambda_{z}, \tilde{\Lambda}_{\bar{z}}, D+i F_{z \bar{z}}\right)$ with gauge group \mathbf{G}
- Chiral multiplet $\Phi=\left(\phi, \psi_{ \pm}, F\right)$ in a representation \mathcal{R} of \mathfrak{g}
- Superpotential $\mathcal{W}(\Phi)$
- Twisted Superpotential $\widetilde{\mathcal{W}}(\Sigma)$, including FI term $\quad \widetilde{\mathcal{W}}_{\mathrm{FI}}(\Sigma)=\sum_{a} t^{a} \Sigma_{a}$
Let's consider the Coulomb branch where we have $\mathbf{G} \longrightarrow U(1)^{\mathrm{rk}(\mathbf{G})}$

Coulomb Branch of GLSM

- Coulomb branch is parametrized by complex scalars $\sigma_{a=1, \cdots, \operatorname{rk}(\mathbf{G})}$.

In addition, we have a quantized flux $\frac{1}{2 \pi i} \int_{\Sigma_{g}} \sqrt{g} f_{z \bar{z}}^{a}=\mathfrak{m}^{a} \in \mathbf{Z}$.

- In this background, the low energy effective action can be written as

$$
\mathcal{S}_{\mathrm{eff}}=\int_{\Sigma_{g}}\left(f_{a} \frac{\partial \mathcal{W}}{\partial \sigma_{a}}+\widetilde{\Lambda}^{a} \Lambda_{b} \frac{\partial \mathcal{W}}{\partial \sigma_{a} \partial \sigma_{a}}\right)+\int_{\Sigma} d^{2} x \sqrt{g} R \Omega(\sigma)+\mathcal{Q}(\cdots)
$$

Note that it only depends on the twisted effective superpotential on \mathbf{R}^{2} :

$$
\left.\mathcal{W}=\mathcal{W}_{\mathrm{FI}}-\frac{1}{2 \pi i} \sum_{\rho}(\rho(\sigma)+m)(\log [\rho(\sigma)+m]-1)-\frac{1}{2} \sum_{\alpha \in \mathfrak{g}_{+}} \alpha(\sigma)\right)
$$

and the dilaton effective action:

$$
\Omega=-\frac{1}{2 \pi i} \sum_{\rho}(r-1) \log (\rho(\sigma)+m)-\frac{1}{2 \pi i} \sum_{\alpha \in \mathfrak{g}_{+}} \log \alpha(\sigma)
$$

which tells us how the theory couples to the non-trivial curvature. [Witten 93] [Nekrasov-Shatashvilli 14]

Coulomb Branch and Vacua

- The quantum vacua of this theory is given by

$$
\exp \left(2 \pi i \frac{\partial \mathcal{W}}{\partial \sigma_{a}}\right)=1, \quad \sigma_{a} \neq \sigma_{b}(a \neq b)
$$

which we call the Bethe equation. For $\mathcal{N}=(2,2)$ theory, it gives the Bethe equation for the corresponding integrable system (XXX spin-chain). [Nekrasov-Shatashvilli 09]

- For $g>0$, the Coulomb branch has a singularity where the non-abelian gauge symmetry enhances. We will discard these solutions fixed by the Weyl symmetry.
- Example: $\mathbf{G}=U(N)$ with L fundamental multiplets:

$$
\prod_{i=1}^{L} \frac{\sigma_{a}-m_{i}+z / 2}{\sigma_{a}-m_{i}-z / 2}=e^{2 \pi i t} \prod_{j \neq i} \frac{\sigma_{i}-\sigma_{j}+z}{\sigma_{i}-\sigma_{j}-z}
$$

Computation of the partition function

Let's go back to the effective action

$$
\mathcal{S}_{\mathrm{eff}}=\int_{\Sigma_{g}}\left(f_{a} \frac{\partial \mathcal{W}}{\partial \sigma_{a}}+\widetilde{\Lambda}^{a} \Lambda_{b} \frac{\partial \mathcal{W}}{\partial \sigma_{a} \partial \sigma_{a}}\right)+\int_{\Sigma} d^{2} x \sqrt{g} R \Omega(\sigma)+\mathcal{Q}(\cdots)
$$

Integrating out the zero modes for $\Lambda_{z}^{a}, \tilde{\Lambda}_{\bar{z}}^{a}$ and evaluating at the solution of the Bethe equation, we get

$$
\mathcal{H}(\sigma)=e^{2 \pi i \Omega(\sigma)} H(\sigma)
$$

$$
\begin{array}{r}
Z_{g}=\sum_{\hat{\sigma} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}(\hat{\sigma})^{g-1} \prod_{a \in \mathrm{flavour}} \Pi_{a}(\hat{\sigma})^{\mathfrak{n}_{F}} \\
H(\sigma)=\operatorname{det}_{a b}\left(2 \pi i \frac{\partial \mathcal{W}}{\partial \sigma_{a} \partial \sigma_{b}}\right)=\operatorname{det}_{a b}\left(\sum_{\rho} \frac{\rho^{a} \rho^{b}}{\rho(\sigma)+m}\right) \\
\Pi^{a}=\exp \left(2 \pi i \frac{\partial \mathcal{W}}{\partial \sigma_{a}^{F}}\right)
\end{array}
$$

This result was first obtained by [Vafa 91] for Landau-Ginzburg model, and later by [Melnikov-Plesser 05] for 2d GLSM with massive vacua. When
$g=0$, the full path integral derivation is given by [Closset-Cremonesi-Park 15] with Omega deformation.

Handle-gluing Operator

$$
Z_{g}=\sum_{\hat{\sigma} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}(\hat{\sigma})^{g-1} \prod_{a \in \text { flavour }} \Pi_{a}(\hat{\sigma})^{\mathrm{n}_{F}}
$$

- Add one handle $g \rightarrow g+1$

$$
\begin{gathered}
\mathcal{H}(\sigma)=e^{2 \pi i \Omega(\sigma)} H(\sigma) \\
H(\sigma)=\operatorname{det}_{a b}\left(2 \pi i \frac{\partial \mathcal{W}}{\partial \sigma_{a} \partial \sigma_{b}}\right)=\operatorname{det}_{a b}\left(\sum_{\rho} \frac{\rho^{a} \rho^{b}}{\rho(\sigma)+m}\right)
\end{gathered}
$$

Flux Operator

$$
Z_{g}=\sum_{\hat{\sigma} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}(\hat{\sigma})^{g-1} \prod_{a \in \text { flavour }} \Pi_{a}(\hat{\sigma})^{\mathfrak{n}_{F}}
$$

$$
f_{z \bar{z}}^{a}=2 \pi i \mathfrak{n}_{F}^{a} \delta^{2}\left(x-x_{0}\right)
$$

- Add one unit of flux $\mathfrak{n}_{F}^{a} \rightarrow \mathfrak{n}_{F}^{a}+1$

$$
\Pi^{a}=\exp \left(2 \pi i \frac{\partial \mathcal{W}}{\partial \sigma_{a}^{F}}\right)
$$

Correlation Functions

- One can insert a local BPS operator

$$
\langle\mathcal{O}(\sigma)\rangle=\sum_{P(\hat{\sigma})=0} \mathcal{O}(\hat{\sigma}) \mathcal{H}(\hat{\sigma})^{g-1} \prod_{a \in \text { flavour }} \Pi_{a}(\hat{\sigma})^{\mathfrak{n}_{F}}
$$

It follows that the correlation function satisfy

$$
\langle\mathcal{O}(\sigma) P(\sigma)\rangle=0
$$

which gives the quantum chiral ring relation.

- After the 3d uplift, this idea can be used to find the Wilson loop algebra and the duality actions on the loop operators.

3d Theories on $\mathbf{R}^{2} \times S^{1}$

- Consider the $3 d N=2$ theories on a circle. The classical coulomb branch is parameterized by

$$
u_{a}=i \beta\left(\sigma_{a}+i a_{a}^{0}\right) \in \mathbf{C}^{*}, \quad a=1, \cdots \operatorname{rk}(\mathbf{G})
$$

- 3d twisted effective superpotential can be obtained by summing over all Kaluza-Klein modes. We have

$$
\mathcal{W}_{3 \mathrm{~d}}=\frac{1}{2} k^{a b} u_{a} u_{b}+\frac{1}{24} k_{g}+\frac{1}{(2 \pi i)^{2}} \sum_{\rho} \operatorname{Li}_{2}\left(e^{2 \pi i \rho(u)}\right)
$$

- Note that $\mathcal{W}_{3 d}$ suffers from the branch cut ambiguity

$$
\mathcal{W}_{3 d}(\sigma) \rightarrow \mathcal{W}_{3 d}(\sigma)+n^{a} \sigma_{a}+m^{a}, n^{a}, m^{a} \in \mathbf{Z}
$$

- The dilaton effective action is

$$
\Omega_{3 d}=\sum_{a} k_{a R} u_{a}+\frac{1}{2} k_{R R}-\frac{1}{2 \pi i}(r-1) \sum_{\rho} \log \left(1-e^{2 \pi i u}\right)-\frac{1}{2 \pi i} \sum_{\alpha \in \mathfrak{g}} \log \left(1-x^{\alpha}\right)
$$

3d Theories on $\Sigma_{g} \times S^{1}$

- With this information, we can write down the full correlation function for the Wilson loops in $\Sigma_{g} \times S^{1}$:

$$
\langle W(x)\rangle_{\Sigma_{g} \times S^{1}}=\sum_{\hat{x} \in \mathcal{S}_{\mathrm{BE}}} W(x) \mathcal{H}(\hat{x})^{g-1} \prod_{F \in \text { flavour }} \Pi_{a}(\hat{x})^{\mathfrak{n}_{F}}
$$

with

$$
\begin{gathered}
\mathcal{H}(x)=e^{2 \pi i \Omega(u)} \operatorname{det}_{a b}\left(\frac{\partial^{2} \mathcal{W}_{3 d}}{\partial u_{a} \partial u_{b}}\right) \\
\Pi_{a}(x)=\exp \left(2 \pi i \frac{\partial \mathcal{W}_{3 d}}{\partial u_{F}^{a}}\right)
\end{gathered}
$$

3d Theories on $\mathcal{M}_{g, p}$

- Let us consider the manifold with a non-trivial fiberation

$$
S^{1} \longrightarrow \mathcal{M}_{g, p} \longrightarrow \Sigma_{g}
$$

with metric $d s^{2}=(d \phi+C(z, \bar{z}))^{2}+2 g_{z \bar{z}} d z d \bar{z}, \quad \frac{1}{2 \pi} \int_{\Sigma_{g}} d C=p \in \mathbb{Z}$

- In the two-dimensional point of view, this theory has an additional flavour symmetry, which is the $U(1)_{K K}$. We can turn on the background twisted vector multiplet for this symmetry, whose lowest component is C_{μ}. The twisted mass is given by

$$
m_{K K}=\frac{1}{\beta}
$$

- We will call the flux operator for $U(1)_{K K}$ the Fibering operator:

$$
\mathcal{F}=\exp \left(2 \pi i \frac{\partial}{\partial m_{K K}}\left(m_{K K} \mathcal{W}_{3 d}\right)\right)
$$

Fibering Operator

- More explicitly,

$$
\mathcal{F}=\exp \left(2 \pi i\left(\mathcal{W}-u_{a} \frac{\partial \mathcal{W}}{\partial u_{a}}-m_{i} \frac{\partial \mathcal{W}}{\partial m_{i}}\right)\right)
$$

- A chiral multiplet contributes

$$
\mathcal{F}_{\Phi}(u)=\exp \left(\frac{1}{2 \pi i} \operatorname{Li}_{2}\left(e^{2 \pi i u}\right)+u \log \left(1-e^{2 \pi i u}\right)\right)
$$

to \mathcal{F}. The fibering operator satisfies the difference equation

$$
\mathcal{F}(u-1)=\Pi(u) \mathcal{F}(u)
$$

- Now we can write down the full $\mathcal{M}_{g, p}$ partition function with Wilson loops:

$$
\langle W(u)\rangle_{\mathcal{M}_{g, p}}=\sum_{\hat{u} \in \mathcal{S}_{B E}} W(\hat{u}) \mathcal{F}(\hat{u})^{p} \mathcal{H}(\hat{u})^{g-1} \prod_{a \in \text { flavour }} \Pi_{a}(\hat{u})^{\mathfrak{n}_{a}^{F}}
$$

[Closset-HK-Willett 17]

$\mathcal{M}_{g, p}$ Partition Function

$$
\langle W(u)\rangle_{\mathcal{M}_{g, p}}=\sum_{\hat{u} \in \mathcal{S}_{B E}} W(\hat{u}) \mathcal{F}(\hat{u})^{p} \mathcal{H}(\hat{u})^{g-1} \prod_{a \in \text { flavour }} \Pi_{a}(\hat{u})^{\mathfrak{n}_{a}^{F}}
$$

- $\mathfrak{n}_{a}^{F} \in \mathbb{Z}_{p}$ is the flux for the torsion subgroup $\subset H^{2}\left(\mathcal{M}_{g, p}, \mathbb{Z}\right)$
- S^{3} partition function [Kapustin-Willett-Yaakov 09] can be rewritten as

$$
Z_{S^{3}}=\sum_{\hat{u} \in \mathcal{S}_{B E}} \mathcal{F}(\hat{u}) \mathcal{H}(\hat{u})^{-1}=\langle\mathcal{F}(u)\rangle_{S_{A}^{2} \times S^{1}}
$$

an operator insertion of the twisted index of [Benini-Zaffaroni 15]

Path Integral Derivation of $Z\left[\mathcal{M}_{g, p}\right]$

- We can compute the same quantity by honest localization computation of the UV lagrangian. As a result, we get an integral expression of the $Z\left[\mathcal{M}_{g, p}\right]$:

$$
Z\left[\mathcal{M}_{g, p}\right]=\frac{1}{\left|W_{\mathbf{G}}\right|} \sum_{\mathfrak{m} \in \mathbb{Z}_{p}^{r}} \int_{C^{\eta}} d^{r} u \mathcal{F}(u)^{p} \Pi_{a}(u)^{\mathfrak{m}_{a}} \Pi_{i}(u)^{\mathfrak{n}_{i}} e^{2 \pi i(g-1) \Omega(u)} H(u)^{g}
$$

- Note that for $\mathrm{p}>0, u^{a}=i \beta\left(\sigma^{a}+i a_{0}^{a}\right)$ is valued in a complex plane \mathbb{C}^{r}. This is due to the fact that the integrand is invariant under the following large gauge transformation:

$$
\left(u^{a}, \mathfrak{m}^{a}\right) \sim\left(u^{a}+1, \mathfrak{m}^{a}+p\right)
$$

This can be gauge-fixed by declaring $\mathfrak{m} \in \mathbb{Z}_{p}^{r}$ and integrating over whole complex plane of $u \in \mathbb{C}^{r}$.

- C^{η} is the real r -dimensional contour which is given by the " JK -residue integral" similarly to [Benini-Hori-Eager-Tachikawa 13][Hori-HK-Yi 14].
- For $p>0$, by a judicious choice of η, the contour \mathcal{C}_{η} is continuously deformed to a real line integral under a favourable condition. Especially for $p=1$, this agrees with the usual expression for the three-sphere partition function computed by [Kapustin-Willett-Yaakov 09]
- When $g-1=0 \bmod p$, R-symmetry bundle trivializes. For such cases, we can relax the integrality condition for the R-charge and continuously vary it. [Jafferis 10][Hama-Hosomich-Lee 10]

Algebra of BPS Wilson loops

- Let us consider the 1/2-BPS Wilson loops with insertion

$$
W(x)=\operatorname{Tr}_{\rho \in \mathcal{R}} x^{\rho}
$$

- Classically, the algebra of the Wilson loops are given by

$$
\mathbf{C}\left[x_{1}, x_{1}^{-1}, \cdots, x_{r}, x_{r}^{-1}\right]^{W_{\mathbf{G}}}
$$

- The quantum algebra is conjectured and tested for a few examples in [KapustinWillett 13]. The proof directly follows from our formula:

$$
\begin{aligned}
\langle W(x)\rangle_{\mathcal{M}_{g, p}} & =\sum_{P(\hat{x})=0} W(\hat{x}) \mathcal{F}(\hat{x})^{p} \mathcal{H}(\hat{x})^{g-1} \Pi(\hat{x})^{\mathfrak{n}} \\
\rightarrow & \langle W(x) P(x)\rangle_{\mathcal{M}_{g, p}}=0
\end{aligned}
$$

which tells us that the quantum algebra is

$$
\mathbf{C}\left[x_{1}, x_{1}^{-1}, \cdots, x_{r}, x_{r}^{-1}\right]^{W_{\mathbf{G}}} / I_{P}
$$

where I_{P} is the ideal generated by $P(x)$ with $x_{a} \neq x_{b}(a \neq b)$. [Closset-HK 16]

3d Dualities

- Seiberg-like dualities $\mathcal{T}=\mathcal{T}_{D}$ are encoded in the Bethe equations. For example, for the Aharony duality, we have

$$
P(x)=C(y) \prod_{i=1}^{N_{f}}\left(x-\hat{x}_{i}\right)=C(y) \prod_{i=1}^{N_{c}}\left(x-\hat{x}_{i}\right) \prod_{i=1}^{N_{f}-N_{c}}\left(x-\hat{x}_{D, i}\right)=P_{D}(x)
$$

- It gives a one-to-one map to the dual vacua $\mathcal{D}:\{\hat{x}\} \rightarrow\left\{\hat{x}_{D}\right\}$
- The statement of the dualities for all g, p :

$$
\begin{aligned}
& \Pi(\{\hat{x}\}, \nu)=\Pi_{D}\left(\left\{\hat{x}_{D}\right\}, \nu\right) \\
& \mathcal{H}(\{\hat{x}\}, \nu)=\mathcal{H}_{D}\left(\left\{\hat{x}_{D}\right\}, \nu\right) \\
& \mathcal{F}(\{\hat{x}\}, \nu)=\mathcal{F}_{D}\left(\left\{\hat{x}_{D}\right\}, \nu\right)
\end{aligned}
$$

for all the solution sets $\left\{\hat{x} ; \hat{x}_{D}\right\}$.

- We have proved the relations for Π, \mathcal{H}.
- $\mathcal{F}=\mathcal{F}_{D}$ follows from the identity of the dilogarithms proved in [Ray 91]

Duality Action on Wilson Line

- For the BPS Wilson loops, the statement of the duality is

$$
\langle W(\hat{x})\rangle=\left\langle W\left(\left\{\hat{x}_{D}\right\}\right)\right\rangle_{D}
$$

- This relation provides a systematic way of obtaining the representation of the dual BPS Wilson loops. [Closset-HK 16]
- For example, $\mathbf{G}=U(3), N_{f}=5, y_{i}=1$

$$
\begin{aligned}
\square^{D}+\square & =5, \\
\square^{D}+\square^{D} \otimes \square+\square & =10, \\
\square^{D} \otimes \square+\square^{D} \otimes \square+\square & =10, \\
\square^{D} \otimes \square+\square^{D} \otimes \square & =5, \\
\square^{D} \otimes \square & =1 .
\end{aligned}
$$

One can use this relation iteratively to write down the dual Wilson loop:

$$
\square^{D}=5-\square, \quad \quad \square^{D}=10-5 \square+\square
$$

4d Theories on $\mathcal{M}_{g, p_{1}, p_{2}}$

- All of the discussion so far can be generalized to $4 d N=1$ theories on fourmanifolds labeled by three integers g, p_{1}, p_{2}. [Closset-HK-Willett]

$$
T^{2} \underset{p_{1}, p_{2}}{\longrightarrow} \mathcal{M}_{g, p_{1}, p_{2}} \longrightarrow \Sigma_{g}
$$

which is realized by turning on the graviphoton background

$$
\frac{1}{2 \pi} \int_{\Sigma_{g}} d C_{1}=p_{1}, \quad \frac{1}{2 \pi} \int_{\Sigma_{g}} d C_{2}=p_{2}, \quad p_{1}, p_{2} \in \mathbb{Z}
$$

for $U(1)_{K K_{1}} \times U(1)_{K K_{2}}$ symmetry.

- The Coulomb branch variable is $u=\tau a_{1}-a_{2}$ with

$$
a_{1}=\frac{1}{2 \pi} \int_{S_{\beta_{1}}^{1}} A_{\mu} d x^{\mu}, \quad a_{x^{2}}=\frac{1}{2 \pi} \int_{S_{\beta_{2}}^{1}} A_{\mu} d x^{\mu}
$$

- The twisted effective superpotential can be computed by summing over two KK towers. The chiral multiplet contributes

$$
\mathcal{W}_{\Phi}^{4 d}=\frac{1}{(2 \pi i)^{2}} \sum_{m \in \mathbb{Z}} \operatorname{Li}_{2}\left(e^{2 \pi i u} q^{m}\right), \quad q=e^{2 \pi i \tau}
$$

Partition Function on $\mathcal{M}_{g, p_{1}, p_{2}}$

- \mathcal{W} can be rewritten as

$$
\mathcal{W}_{\Phi}^{4 d}=-\frac{u^{3}}{6 \tau}+\frac{u^{2}}{4}-\frac{u \tau}{12}+\frac{1}{24}+\frac{1}{(2 \pi i)^{2}} \sum_{m=0}^{\infty} \operatorname{Li}_{2}\left(e^{2 \pi i u} q^{m}\right)-\operatorname{Li}_{2}\left(e^{-2 \pi i u} q^{m+1}\right)
$$

- Following the same logic, the partition function can be written as

$$
Z\left[\mathcal{M}_{g, p_{1}, p_{2}}\right]=\sum_{\hat{x} \in \mathcal{S}_{B E}} \mathcal{F}_{1}(\hat{x})^{p_{1}} \mathcal{F}_{2}(\hat{x})^{p_{2}} \mathcal{H}(\hat{x})^{g-1} \prod_{a} \Pi_{a}(\hat{x})^{\mathfrak{n}_{a}}
$$

$$
\begin{array}{ll}
\mathcal{F}_{1}(u)=\exp \left(2 \pi i \frac{\partial \mathcal{W}}{\partial \tau}\right) & \mathcal{H}(u)=e^{2 \pi I \Omega(u)} \operatorname{det}_{a b}\left(\frac{\partial^{2} \mathcal{W}}{\partial u_{a} \partial u_{b}}\right) \\
\mathcal{F}_{2}(u)=\exp \left(2 \pi i\left(\mathcal{W}-u_{a} \frac{\partial \mathcal{W}}{\partial u_{a}}\right)\right) & \Pi_{F}(u)=\exp \left(2 \pi i \frac{\partial \mathcal{W}}{\partial u_{a}^{F}}\right)
\end{array}
$$

- The Bethe equation in $4 d$ is an elliptic equation. For example, we have

$$
\prod_{i=1}^{N_{f}} \frac{\theta\left(x^{-1} y_{i} ; q\right)}{\theta\left(x \widetilde{y}_{i} ; q\right)}=1
$$

for the SQCD with Sp gauge group. The well-definedness of this equation comes from the gauge anomaly cancellation condition.

Modular Transformation

- Note that the new formula is written in terms of u, ν valued in tori, it has a well defined modular transformation under $S L(2, \mathbb{Z})$:

$$
S:(u, \tau) \rightarrow\left(\frac{u}{\tau},-\frac{1}{\tau}\right), \quad T:(u, \tau) \rightarrow(u, \tau+1)
$$

- This is distinguished feature compared to the usual superconformal index, which only had a real holonomy variable.

Modular Transformation

- Each contribution of the partition function transforms nicely under the modular transformation $\left(S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \widetilde{T} \equiv \operatorname{CSTS}=\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)\right.$):

$$
\begin{aligned}
& S\left[\mathcal{F}_{1}\right]=e^{\frac{\pi i}{3 \tau} \mathcal{A}^{\mathbf{a b c}} \mathbf{u}_{\mathbf{a}} \mathbf{u}_{\mathrm{b}} \mathbf{u}_{\mathbf{c}} \mathcal{F}_{2}^{-1}, ~} \\
& S\left[\mathcal{F}_{2}\right]=e^{-\frac{\pi i}{3 \tau^{2}} \mathcal{A}^{a b c} \mathbf{u}_{\mathrm{a}} \mathbf{u}_{\mathrm{b}} \mathrm{u}_{\mathrm{c}} \mathcal{F}_{1}, ~} \\
& \widetilde{T}\left[\mathcal{F}_{1}\right]=\mathcal{F}_{1} \mathcal{F}_{2}, \\
& S\left[\Pi_{\mathrm{a}}\right]=e^{\frac{\pi i}{2} \mathcal{A}^{\mathbf{a}}} e^{\frac{\pi i}{\tau} \mathcal{A}^{\mathrm{abc}} \mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathbf{c}}} \Pi_{\mathbf{a}}, \\
& \widetilde{T}\left[\mathcal{F}_{2}\right]=\mathcal{F}_{2}, \\
& \widetilde{T}\left[\Pi_{\mathbf{a}}\right]=e^{-\frac{\pi i}{6} \mathcal{A}^{\mathbf{a}}} \Pi_{\mathbf{a}}, \\
& S[\mathcal{H}]=e^{\frac{\pi i}{2} \mathcal{A}^{R}} e^{\frac{\pi i}{\tau} \mathcal{A}^{R \mathrm{bc}} \mathbf{u}_{\mathbf{b}} \mathbf{u}_{\mathbf{c}}} \mathcal{H}, \\
& \widetilde{T}[\mathcal{H}]=e^{-\frac{\pi i}{6} \mathcal{A}^{R}} \mathcal{H},
\end{aligned}
$$

$$
\text { where } \quad \mathcal{A}^{a b c}=\sum_{I} Q_{I}^{a} Q_{I}^{b} Q_{I}^{c}, \quad \mathcal{A}^{a}=\sum_{I} Q_{I}^{a}
$$

are the anomaly coefficients of the theory. Since they vanish for the gauge fugacity, the $S L(2, \mathbb{Z})$ transformation of the full partition function is well defined, and only depends on the t'Hooft anomaly of the theory.

- With this transformation, one can always map $\left(p_{1}, p_{2}\right) \rightarrow(p, 0)$ which defines an index on $\mathcal{M}_{g, p} \times S^{1}$.

Integral formula for $Z\left[\mathcal{M}_{g, p} \times S^{1}\right]$

- We can derive the same quantity by a direct localization computation. The final formula reads

$$
Z\left[\mathcal{M}_{g, p} \times S^{1}\right]=\frac{1}{\left|W_{\mathbf{G}}\right|} \sum_{\mathfrak{m} \in \mathbb{Z}_{p}^{r}} \int_{C^{\eta}} d^{r} u \mathcal{F}_{1}(u)^{p} \Pi_{a}(u)^{\mathfrak{m}_{a}} \Pi_{i}(u)^{\mathfrak{n}_{i}} e^{2 \pi i(g-1) \Omega(u)} H(u)^{g}
$$

- For $g=0, p=1$, we can show that it reduces to the SCI in the limit $p=q$ with a unit circle contour integral.

Casimir Energy

- For $\mathcal{M}_{g, p} \times S^{1}$, the partition function can be written as

$$
Z\left[\mathcal{M}_{g, p} \times S^{1}\right](\nu, \tau)=e^{2 \pi i \tau \mathcal{E}_{\mathcal{M}_{g, p}}(\nu, \tau)} \mathcal{I}_{\mathcal{M}_{g, p}}(\nu, \tau)
$$

where $\mathcal{I}_{\mathcal{M}_{g, p}}$ is generalized index,

$$
\mathcal{I}_{\mathcal{M}_{g, p}}(\nu, \tau)=\operatorname{Tr}_{\mathcal{M}_{g, p}}\left[(-1)^{F} q^{2 J+R} \prod_{a} y_{a}^{Q_{a}}\right]=\mathcal{I}^{(0)}(\nu)+\mathcal{O}(q)
$$

and $\mathcal{E}_{\mathcal{M}_{g, p}}$ is the supersymmetric Casimir energy [Lorenzen-Martelli 15][Assel-Cassini-Di Pietro-Komargodski-Lorenzen-Martelli 15]. We find

$$
\begin{aligned}
\mathcal{E}_{\mathcal{M}_{g, p}}(\nu ; \tau)= & p\left(\frac{\mathcal{A}^{\alpha \beta \gamma}}{6 \tau^{3}} \nu_{\alpha} \nu_{\beta} \nu_{\gamma}-\frac{\mathcal{A}^{\alpha}}{12 \tau} \nu_{\alpha}\right) \\
& \left.-(g-1)\left(\frac{\mathcal{A}^{\alpha \beta R}}{2 \tau^{2}} \nu_{\alpha} \nu_{\beta}+\frac{\mathcal{A}^{R}}{12}\right)-\mathfrak{n}_{\alpha}\left(\frac{\mathcal{A}^{\alpha \beta \gamma}}{2 \tau^{2}} \nu_{\beta} \nu_{\gamma}+\frac{\mathcal{A}^{\alpha}}{12}\right)\right) .
\end{aligned}
$$

Note that it is determined by anomalies of the theory. For the three sphere case, it agrees with the observation in [Bobev-Bullimore-Kim 15]

Cardy Formula

- We can study the expression for the $q \rightarrow 1$ limit, which corresponds to the three-dimensional limit. We first take the modular transformation then take the $q \rightarrow 0$ limit. We find a universal expression

$$
\log Z\left[\mathcal{M}_{g, p} \times S^{1}\right]=-\frac{2 \pi i}{\tau}\left((1-g) \frac{\mathcal{A}^{R}}{12}+\frac{\mathcal{A}^{\alpha}}{12}\left(p \frac{\nu_{\alpha}}{\tau}-\mathfrak{n}_{\alpha}\right)\right)+\mathcal{O}\left(\beta_{1}^{0}\right)
$$

- This agrees with the formula

$$
\begin{aligned}
\log Z\left[\mathcal{M}_{g, p} \times S^{1}\right] & =-\frac{\pi \operatorname{Tr}(R)}{24 \beta_{2}} L_{M_{g, p}}+\mathcal{O}\left(\beta_{2}^{0}\right) \\
L_{M_{g, p}} & =4 \beta_{1}(1-g)
\end{aligned}
$$

given by [Di Pietro-Komargodski 14].

Witten Index of SQCD

- $\mathcal{M}_{1,0} \times S^{1}=T^{4}$ partition function computes the Witten index of the theory. The expression reduces to

$$
Z\left[T^{4}\right]=\sum_{P(x)=0} 1
$$

- The number of solutions of the Bethe equation gives the Witten index.
- For SQCD with $\mathbf{G}=U S p\left(2 N_{c}\right), 2 N_{f}$ flavours, we find

$$
Z\left[T^{4}\right]=\binom{N_{f}-2}{N_{c}}
$$

- For SQCD with $\mathbf{G}=S U\left(N_{c}\right), N_{f}$ flavours, we conjecture

$$
Z\left[T^{4}\right]=\binom{N_{f}-2}{N_{c}-1}
$$

at generic fugacities. This formula agrees with the Seiberg dualities.

Summary

- We derived generalized supersymmetric partition functions of $3 d N=2$ theories and $4 d N=1$ theories, which uncover the relation between correlation functions on manifolds with different topologies.
- In the A-model point of view, the expression can be written as a sum over the Bethe vacua.
- The localization computation gives an integral expression, which turns out to be equivalent to the first expression.
- In 3d, it provides a useful tool to study the dualities and the algebra of the halfBPS Wilson loops.
- In 4d, the index has a well-defined modular transformation, Casimir energy and Cardy formula determined by the anomalies of the theory.
- We can compute the Witten index for 3d CS-YM-Matter theory and 4d SQCD, and checked that the Seiberg dualities holds for all g,p.

Future Directions

- What is the algebra of the surface operators in 4 d ? [work in progress]
- Relation between Casimir energy and anomaly, phases of the 4d partition functions [work in progress]
- Can we generalize this story to the most general Seifert manifold?
- Application to the 3d-3d correspondence?
- How can we introduce the squashing (for genus 0) in this story?
- What is the Hilbert space interpretation of the generalized index?

