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CYs and GLSMs

• A Calabi-Yau space (CY) can be realized as the low energy
configuration of an N = (2, 2) supersymmetric gauge theory
in two dimensions - the gauged linear sigma model (GLSM).
[Witten 93]

• The choice of gauge group and matter content determines the
CY.

• Hypersurfaces and complete intersections in toric ambient
spaces are realized by GLSMs with gauge groups G = U(1)k .

• Non-abelian gauge groups lead to exotic CYs (e.g.
determinantal varieties).

• Phases:
• The FI-parameters and the θ-angles can be identified with the

the Kähler moduli of the CY.
• By tuning these couplings we can probe the Kähler moduli

space.



CYs and GLSMs B-branes and Z
D2 Applications of Z

D2 Conclusions

GLSM Data

• G . . . a compact Lie group (gauge group)

• V . . . space of chiral fields φi ∈ V

• ρV : G → GL(V ) . . . faithful complex representation
• CY condition: G → SL(V )

• R : U(1)→ GL(V ) . . . R-symmetry
• Ri . . . R-charges
• R and ρV commute
• charge integrality: R(e iπ) = ρV (J) for J ∈ G

• T ⊂ G . . . maximal torus
• Lie algebras: g = Lie(G ), t = Lie(T )
• Qa

i ∈ t∗C . . . gauge charges of chiral fields
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GLSM Data (ctd.)

• t ∈ g∗C . . . FI-theta parameter
• ta = ζa − iθa

• ta ↔ Kähler moduli of the CY

• σ ∈ tC ⊂ gC . . . scalar component of the vector multiplet

• W ∈ Sym(V ∗) . . . superpotential
• G -invariant
• R-charge 2
• non-zero for compact CYs

• Classical Potential

U =
1

8e2
|[σ, σ̄]|2 +

1

2

(
|Q(σ)φ|2 + |Q(σ̄)φ|2

)
+

e2

2
D2 + |F |2
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Classical Equations of Motion

• Higgs branch: σ = 0

• D-terms

µ(φ) = ζ

• µ : V → g∗ . . . moment map
• G is broken to a subgroup

• F-terms

dW = 0

• Phases: parameter space gets divided into chambers

• Classical Vacua

Xζ = {dW−1(0)} ∩ µ−1(ζ)/G

• Ideal Iζ : φ ∈ V where the quotient is ill-defined
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Coulomb branch

• Coulomb branch: φ = 0, ζ = 0

• σ fields can take any value classically.

• One-loop corrections generate en effective potential.

W̃eff = −t(σ)−
∑

i

Qi (σ)(log(Qi (σ))− 1) + πi
∑
α>0

α(σ)

• Qi : weights of the matter representation ρV

• α > 0: positive roots

• Lifted except for points, lines, etc. → discriminant
• One can smoothly interpolate between the phases.
• The CY undergoes a topological transition.

• Mixed Branches if rkT > 1.
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Example 1: Quintic – G = U(1)

• Field content: φ = (p, x1, . . . , x5) ∈ C(−5)⊕ C(1)⊕5

• Potential: W = pG5(x1, . . . , x5)

• D-term: −5|p|2 +
∑5

i=1 |xi |2 = ζ

• F-terms: G5(x1, . . . , x5) = 0, p ∂G5
∂xi

= 0

• ζ � 0: p = 0, Quintic G5 = 0 in P4

• ζ � 0: Landau-Ginzburg orbifold with potential G5

• Landau-Ginzburg/CY correspondence
[Witten 93][Herbst-Hori-Page 08][Kontsevich,Orlov]

• Moduli space

LG CY

e−(ζ−iθ) = − 1
3125 ζ →∞G → Z5 G → 1ζ → −∞



CYs and GLSMs B-branes and Z
D2 Applications of Z

D2 Conclusions

Example 2: Rødland model – G = U(2)

• Field content: (p1, . . . , p7, x1, . . . x7) ∈ (det−1 S)⊕7 ⊕ S⊕7

with S ' C2 fundamental representation

• Potential:

W =
7∑

i ,j ,k=1

2∑
a,b=1

Aij
kp

kxa
i εabx

b
k =

7∑
i ,j=1

Aij (p)[xixj ]

• D-terms:

−
7∑

i=1

|pi |2 +
7∑

j=1

|xi |2 = ζ

xx† − 1

2
||x ||212 = 0
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Example 2: ctd.

• ζ � 0: Complete intersection of codimension 7 in G (2, 7):∑7
i ,j=1 A

ij
k [xixj ] = 0

• ζ � 0: Pfaffian CY in P6: rkA(p) = 4; G broken to SU(2) →
strongly coupled! (go to dual) [Hori ’11]

• Grassmannian/Pfaffian correspondence
[Hori-Tong ’06][Rødland,Kuznetsov,Addington-Donovan-Segal,Halpern-Leistner,Ballard-Favero-Katzarkov]

• Moduli space

ζ →∞

Grassmannian CY
G → 1G → SU(2)

Pfaffian CY

ζ → −∞

• The two CYs are not birational.
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Example 3: Non-abelian two parameter model

• A two-parameter non-abelian model with two geometric
phases. [Hori-JK arXiv:1612.06214 [hep-th]]

• G = (U(1)2 × O(2))/H
• free Z2-quotient of a codimension 5 complete intersection in a

toric variety ↔ determinantal variety
• Phases

geometric

X

hybrid

unknown

Ỹ

hybrid

hybrid

geometric
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Example 3: (ctd.)

• The CYs in the geometric phases are not birational.
• different fundamental groups

• There is a phase which has both strongly and weakly coupled
components.

• The discriminant locus has a mixed Coulomb-confining branch
that is mapped to a mixed Coulomb-Higgs branch under
Hori’s duality.

• There is an extra phase boundary due to non-abelian D-term
equations.

• Mirror symmetry calculations work here because one phase is
“almost” toric.
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Further non-abelian examples

• One-parameter models with (U(1)× O(2))/H
• Reye congruence ↔ determinantal quintic [Hosono-Takagi 11-14][Hori 11]

• Hybrid model ↔ determinantal variety in P11222
[Hori-JK 13]

• Models with G = U(1)× SU(2) and U(2)
• Hybrid models ↔ Pfaffian CYs in weighted P4

[Kanazawa 10][Hori-JK ’13]

• PAX/PAXY [Jockers et al. ’12]

• SSSM [Gerhardus-Jockers ’15]
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B-branes in the GLSM

• B-branes in the GLSM are G -invariant matrix factorizations of
the GLSM potential with R-charge 1

[Herbst-Hori-Page ’08][Honda-Okuda,Hori-Romo ’13]

• Data:
• Z2-graded Chan-Paton space: space M = M0 ⊕M1

• Matrix Factorization: Q ∈ End1(M) with

Q2 = W · idM

• G-action: ρ : G → GL(M) with

ρ(g)−1Q(gφ)ρ(g) = Q(φ)

• R-action: r∗ : u(1)R → gl(M) with

λr∗Q(λRφ)λ−r∗ = λQ(φ)
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Examples

• No classification for matrix factorizations! However, there are
some canonical examples.

• Example 1: Quintic

Q1 = pη + G5(x)η̄ {η, η̄} = 1

• Example 2: Quintic

Q2 =
5∑

i=1

xiηi +
p

5

∂G5

∂xi
η̄i {ηi , η̄j} = δij

• Example 3: Rødland

Q3 =
7∑

i=1

piηi +
∂W

∂pi
η̄i

• Studied mostly in the context of B-twisted Landau-Ginzburg
models.
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Hemisphere Partition Function

• SUSY localization in the GLSM yields the hemisphere
partition function. [Sugishita-Terashima,Honda-Okuda,Hori-Romo ’13]

ZD2 (B) = C

∫
γ

drkG σ
∏
α>0

α(σ) sinh(πα(σ))
∏

i

Γ

(
iQi (σ) +

Ri

2

)
e it(σ)fB(σ)

• α > 0 positive roots
• σ ∈ tC twisted chirals
• Ri . . . R-charges, Qi . . . gauge charges
• t = ζ − iθ . . . complexified FI (Kähler) parameter(s)

• γ . . . integration contour (s.t. integral is convergent)

• Brane factor
fB(σ) = trM

(
e iπr∗e2πρ(σ)

)
• M . . . Chan-Paton space

• The brane input is obtained by restricting the matrices ρ(g) and λr∗ to

the maximal torus.
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What does ZD2 compute?

• ZD2 computes the fully quantum corrected D-brane central
charge.

• In large volume of U(1) GLSMs (CY hypersurface X in toric
ambient space), it reduces to the Gamma class: [Hori-Romo ’13]

ZLV
D2 = C

∞∑
n=0

e−nt

∫
X

Γ̂X (n)eB+ 1
2π
ωch(BLV )

• Γ̂(x) = Γ
(
1− x

2πi

)
. . . Gamma class: Γ̂Γ̂∗ = ÂX

• ω . . . Kähler class
• ch(BLV ) . . . Chern character of the LV brane

• B ∈ H2(X ,Z) . . . B-field
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Mirror Symmetry

• Instanton corrections can be expressed in terms of the periods
of the mirror CY.

• Example: Structure sheaf OX

Z (OX ) =
H3

3!

(
it

2π

)3

+

(
it

2π

)
c2H

24
+ i

ζ(3)

(2π)3
χ(X ) + O(e−t)

mirror
=

H3

3!
$3 +

c2H

24
$2 + i

ζ(3)χ(X )

(2π)3
$0

• This is exactly what one gets when one evaluates ZD2 in the
ζ � 0-phase for Q1 and Q3.

• However, no mirror symmetry required!
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D-brane transport

• One can use the GLSM to transport D-branes from one phase
to another.
• Solved for abelian GLSMs. [Herbst-Hori-Page ’08]

• Transport is non-trivial due to singularities in the moduli
space.

−2π

Quintic Rødland

0 2π0 2π

θ

ζ
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Paths and grade restriction

• Not every GLSM brane can be transported along a given path
in a well-defined way.
• Brane may become unstable/break SUSY.

• Which branes are “allowed” is determined by the grade
restriction rule. [Herbst-Hori-Page ’08]

• Given a path (i.e. choice of θ-angle) only certain gauge
charges of the brane are allowed.

• Given a brane in a phase, one can always find a GLSM brane
that is in the charge window.

• Understood in the abelian case.

• New approach: The hemisphere partition function knows
about the grade-restriction rule. [Eager-Hori-Romo-JK in progress]
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ZD2 and grade restriction

• We can obtain the grade restriction rule from the asymptotic
behavior of the hemisphere partition function.

Z q

D2 =

∫
γ

d lG σe−Aq (σ), σ = σ1 + iσ2

Aq(σ) = ζ(σ2)− (θ − 2πq)(σ1) +

+
∑

i

{
Qi (σ2) (log |Qi (σ)| − 1) + |Qi (σ1)|

(
π

2
+ arctan

Qi (σ2)

|Qi (σ1)|

)}

• Condition: ZD2 has to be convergent for a given contour γ.
• Depending on the path, this restricts the allowed charges q of

the brane.
• Aq is the effective boundary potential on the Coulomb branch.
• Difficult to analyze because we have to find a parametrization

for γ.
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Results on grade restriction

• For the quintic, the known grade restriction rule is
reproduced. [Hori-Romo ’13]

Aq(σ) = (ζ − 5 log 5)︸ ︷︷ ︸
ζeff

σ2 + (5π − sgn(σ1)(θ + 2πq))|σ1|

• ζeff ≷ 0: σ2 ≷ 0 is admissible.
• ζeff = 0: − 5

2 <
θ

2π + q < 5
2

• Rødland CY:
• We find four different windows corresponding to the four

inequivalent paths.
• We can verify the correct monodromy behavior for the paths

around the three conifold points.
• In the strongly coupled Pfaffian phase, there is a grade

restriction rule deep inside the phase.
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How to grade restrict?

• Paths in the moduli space ⇐⇒ window of allowed charges

• Grade restriction: replace a brane B̂ outside the window by an
equivalent one B that is the same in a given phase A

• Empty branes: branes BA
E that reduce to “nothing” in a

specific phase A
• ZA

D2 (BA
E ) = 0

• Q1,Q3. . . empty branes in the LG/Pfaffian, Q2. . . empty brane
in the geometric phase

• B̂ and a bound state B = B̂ Ψ→ BA
E (tachyon condensation)

reduce to the same brane in phase A
• Binding empty branes changes the gauge charges
• Use empty branes to grade restrict to a given charge window
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GLSM and Monodromy
• We can compute the monodromy of a D-brane by

transporting it along a non-contractible loop in the moduli
space [Herbst-Hori-Page ’08]

• Monodromy inside a phase: θ-angle shift by 2π ↔ shift of
gauge charges of the brane by +1

• Monodromy across a phase boundary: grade restrict with
respect to adjacent window

θ

ζ

−(N+2k)π −(N+2k−2)π −(N+2k−4)π

wk+1 wk
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ZD2 and Monodromy

• We can read off monodromy matrices from the brane factors
of the hemisphere partition function in the GLSM
[Romo-Scheidegger-JK ’16][Erkinger-JK ’17]

• Recipe:

1. Choose a reference path/window
2. Take a brane grade B restricted to a path
3. Perform the monodromy operation with image brane B′
4. Grade restrict back to the reference window to get a brane B̃′
5. Read off the the monodromy matrix Mij from the brane factors

fB̃′i
=
∑

j

Mij fBi

• Explicit examples for one-parameter hypersurfaces

• Also works for the Rødland example.
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ZD2 in non-geometric phases

• In geometric phases ZD2 computes the quantum corrected
central charge of the D-brane.

• What about Landau-Ginzburg orbifold phases?
[Lerche-Vafa-Warner ’89][Intriligator-Vafa ’90][Fan-Jarvis-Ruan-Witten][Chiodo-Iritani-Ruan]

• In one-parameter models with a LG-phase the hemisphere
partition function computes [Romo-Scheidegger-JK]

ZLG
D2 =

(
IFJRW , Γ̂FJRW ◦ ch(Q)

)
• IFJRW . . . I -Function (periods)
• Γ̂FJRW . . . Gamma-class
• ch(Q) . . . Chern character [Walcher ’04]

• (·, ·) . . . pairing
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Landau-Ginzburg Central Charge (ctd.)

• Show that ZD2 reduces to this in the LG phase.

• Works for a basis of branes/periods on the quintic.

• Generalization to two-parameter models seems to work.

• Does it define a stability condition?
[Douglas-Fiol-Römelsberger ’00][Aspinwall-Douglas ’01][Douglas ’02][Bridgeland]

• At the Landau-Ginzburg point this should reduce to
R-stability [Walcher ’04]

• Compare stable vs. unstable configurations of branes and their
bound states.
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Summary

• GLSMs are useful physics tools to study CYs and their moduli
spaces.

• Non-abelian GLSMs lead to exotic CYs that are not complete
intersections in toric ambient spaces.

• Supersymmetric localization gave us new tools to calculate
quantum corrections in CY compactifications.
• Without mirror symmetry
• Applies to “exotic” CYs: determinantal varieties, etc.
• Applies also to “exotic” phases: strongly coupled, hybrid, etc.

• The hemisphere partition function computes the quantum
corrected central charge of a D-brane
• D-brane transport and monodromies
• Landau-Ginzburg central charge
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Open Problems

• Systematic construction of exotic CYs via non-abelian GLSMs
• Higher rank gauge groups
• Exotic matter [Galkin’s talk]

• Central charge in non-geometric phases.
• Hemisphere partition function as (“global”) stability condition?
• Analytic continuation of periods of CYs with more than one

conifold point [Romo-Scheidegger-JK][Klemm’s talk]

• Better understanding of hybrid phases

• D-branes and D-brane transport on exotic CYs

• Mirror symmetry for exotic CYs

• Relation to localization results in higher dimensions and
implications for CY physics
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