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CYs and GLSMs

A Calabi-Yau space (CY) can be realized as the low energy
configuration of an N' = (2, 2) supersymmetric gauge theory
in two dimensions - the gauged linear sigma model (GLSM).

[Witten 93]

The choice of gauge group and matter content determines the
CY.

Hypersurfaces and complete intersections in toric ambient
spaces are realized by GLSMs with gauge groups G = U(1)*.
Non-abelian gauge groups lead to exotic CYs (e.g.
determinantal varieties).

Phases:

e The Fl-parameters and the #-angles can be identified with the
the Kahler moduli of the CY.

e By tuning these couplings we can probe the Kahler moduli
space.
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e G ...a compact Lie group (gauge group)
e V/ ... space of chiral fields ¢; € V

pv : G — GL(V) ... faithful complex representation
e CY condition: G — SL(V)

e R:U(1) — GL(V) ... R-symmetry

e R; ... R-charges

e R and py commute

e charge integrality: R(e'™) = py(J) for J€ G
e T C G ... maximal torus

o Lie algebras: g = Lie(G), t = Lie(T)
e Q7 € t7 ... gauge charges of chiral fields
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GLSM Data (ctd.)

t € gr ... Fl-theta parameter
o t7=(7—i6?
e t7 <+ Kahler moduli of the CY

o € tc C ge ... scalar component of the vector multiplet
W e Sym(V*) ... superpotential

e G-invariant

e R-charge 2

e non-zero for compact CYs

Classical Potential

1 1 2
U =50, 51 + 5 (1Q(0)8 +1Q(3)6 ) + 5-D? +|FI?
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Classical Equations of Motion

e Higgs branch: ¢ =0
e D-terms

() =¢

e u:V —g" ... moment map
e G is broken to a subgroup
e F-terms

dW =0

e Phases: parameter space gets divided into chambers
e Classical Vacua

Xe ={dWH0)} np7(Q)/G

e Ideal /-1 ¢ € V where the quotient is ill-defined
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Coulomb branch

e Coulomb branch: ¢ =0,( =0
e o fields can take any value classically.

e One-loop corrections generate en effective potential.

Werr = ZQ, (log(Qi(0)) — 1) + i Y alo

a>0

o @;: weights of the matter representation py
e « > 0: positive roots

e Lifted except for points, lines, etc. — discriminant

e One can smoothly interpolate between the phases.
e The CY undergoes a topological transition.

e Mixed Branches if tkT > 1.
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Example 1: Quintic — G = U(1)

e Field content: ¢ = (p, x1,...,x5) € C(=5) ® C(1)®>
e Potential: W = pGs(xi,...,xs)
o D-term: —5|pl2 + 32, x> =¢
e F-terms: Gs(xi,...,x5) =0, p%—f? =
e (> 0: p=0, Quintic Gs =0 in P*
e ( < 0: Landau-Ginzburg orbifold with potential Gs
e Landau-Ginzburg/CY correspondence
[Witten 93][Herbst-Hori-Page 08][Kontsevich,Orlov]
e Moduli space

LG X CcY
GﬂZs(afoo e_(g_'g):*:ﬂlj ¢ — o0 ¢—1
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Example 2: Rgdland model — G = U(2)

e Field content: (p',...,p",x1,...x7) € (det™! §)®7 @ §&7
with S ~ C? fundamental representatlon
e Potential:
7 2
> Y Attt - Y Aol
ij,k=1a,b=1 ij=1
e D-terms:

7 7
PP+ kP = ¢
i=1 j=1

1
soct — §||XH212 =0

Conclusions
[e]e]
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Example 2: ctd.

e (> 0: Complete intersection of codimension 7 in G(2,7):
Z,?le AZ[Xin] =0
e ( < 0: Pfaffian CY in P®: rkA(p) = 4; G broken to SU(2) —

strongly coupled! (go to dual) [Hori 1]
e Grassmannian/Pfaffian correspondence

[Hori-Tong '06][Rgdland,Kuznetsov,Addington-Donovan-Segal,Halpern-Leistner,Ballard-Favero-Katzarkov]

e Moduli space

Pfaffian CY X Grassmannian CY
G — SU(2) % X > G—1
¢ — —oo X ¢ — oo

e The two CYs are not birational.
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Example 3: Non-abelian two parameter model

e A two-parameter non-abelian model with two geometric

phaseS. [Hori-JK arXiv:1612.06214 [hep-th]]

e G= (U2 x 0(2))/H

free Zy-quotient of a codimension 5 complete intersection in a
toric variety <> determinantal variety
e Phases

hybrid
hybrid geometric

X

hybrid
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Example 3: (ctd.)

e The CYs in the geometric phases are not birational.
o different fundamental groups

e There is a phase which has both strongly and weakly coupled
components.

e The discriminant locus has a mixed Coulomb-confining branch
that is mapped to a mixed Coulomb-Higgs branch under
Hori's duality.

e There is an extra phase boundary due to non-abelian D-term
equations.

e Mirror symmetry calculations work here because one phase is
“almost” toric.
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Further non-abelian examples

e One-parameter models with (U(1) x O(2))/H

e Reye congruence <> determinantal quintic [Hosono-Takagi 11-14][Hori 11]
o Hybrid model < determinantal variety in P11222 [Hori-JK 13]

Models with G = U(1) x SU(2) and U(2)
e Hybrid models «+ Pfaffian CYs in weighted P*

[Kanazawa 10][Hori-JK '13]

PAX/ PAXY [Jockers et al. "12]
SSS M [Gerhardus-Jockers '15]
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B-branes in the GLSM

e B-branes in the GLSM are G-invariant matrix factorizations of
the GLSM potential with R-charge 1

[Herbst-Hori-Page '08][Honda-Okuda,Hori-Romo '13]

e Data:

o 7Zs-graded Chan-Paton space: space M = M° @ M!
e Matrix Factorization: Q € End*(M) with

Q=W -idy
e G-action: p: G — GL(M) with

(&) Q(ge)r(g) = Qe)
e R-action: r, : u(1)g — gl(M) with

A= QARHA™ = AQ(9)
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Examples

No classification for matrix factorizations! However, there are
some canonical examples.
Example 1: Quintic

Qu=pn+Gs(x)1  {n7}=1
Example 2: Quintic

p G5 _ _
Q2 = ZXIT]I 8 = Ni {77:'77Ij} = 6']
Example 3: Rgdland

an, 8 ,77,

Studied mostly in the context of B-twisted Landau-Ginzburg
models.
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Hemisphere Partition Function

e SUSY localization in the GLSM yields the hemisphere

partition fU nCtion. [Sugishita-Terashima,Honda-Okuda,Hori-Romo '13]
rkg . . R; it(c)
Zp(B) = C [ d™co [ alo)sinh(ra(o) [T ( iQi(e) + 5 ) €7 s(0)
v a>0 i

® « > 0 positive roots

® o ¢ tc twisted chirals

® R; ...R-charges, Q; ...gauge charges

® t=(—if...complexified FI (K&hler) parameter(s)

® ~ ...integration contour (s.t. integral is convergent)

e Brane factor '
fg(o) = try (e”"* 62””("))

® M ...Chan-Paton space

® The brane input is obtained by restricting the matrices p(g) and A" to
the maximal torus.
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What does Zp2 compute?

e Zp2 computes the fully quantum corrected D-brane central
charge.

e In large volume of U(1) GLSMs (CY hypersurface X in toric
ambient space), it reduces to the Gamma class: [Hori-Romo '13]

ZH = CZe nt / Fx(n)eB+E“ch(BLy)

r =T (1 — —) ..Gamma class: [* = AX
Kahler class
Ch(BLV) ... Chern character of the LV brane

B € H*(X,Z) ...B-field
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Mirror Symmetry

e Instanton corrections can be expressed in terms of the periods
of the mirror CY.

e Example: Structure sheaf Ox

3 70t\3 it\ o . .

200 = (A (L)L 800+ 06
mir_ror H3 C2H C(?’)X(X)
-3 +§ 2%/ (2m)3

e This is exactly what one gets when one evaluates Zp> in the
¢ > 0-phase for Q7 and Qs.

e However, no mirror symmetry required!
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D-brane transport

e One can use the GLSM to transport D-branes from one phase
to another.

e Solved for abelian GLSMs. [Herbst-Hori-Page '08]

e Transport is non-trivial due to singularities in the moduli

space.
Quintic Rgdland

|
|
|
|
|
|
|
|
|
|
|
:
X 27 % —2n]
i
|
|
|
|
|
|
|
|
|
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Paths and grade restriction

e Not every GLSM brane can be transported along a given path
in a well-defined way.

e Brane may become unstable/break SUSY.
e Which branes are “allowed” is determined by the grade
reStriCtion rule. [Herbst-Hori-Page '08]

e Given a path (i.e. choice of 6-angle) only certain gauge
charges of the brane are allowed.

e Given a brane in a phase, one can always find a GLSM brane
that is in the charge window.

e Understood in the abelian case.

e New approach: The hemisphere partition function knows
about the grade—restriction rule. [Eager-Hori-Romo-JK in progress]
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Zp2 and grade restriction

e We can obtain the grade restriction rule from the asymptotic
behavior of the hemisphere partition function.

zi, = d'éoge %) 5 =0 +io
D /7 1+ 102
Aq(a) = Clo2) = (6 - 2ma)(on) +
+ 3 {@2) (o8 100)] = 1) + Qo) (§ + arctan 2172 ) |

e Condition: Zp, has to be convergent for a given contour 7.

e Depending on the path, this restricts the allowed charges g of
the brane.

o A, is the effective boundary potential on the Coulomb branch.

e Difficult to analyze because we have to find a parametrization
for ~.
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Results on grade restriction

e For the quintic, the known grade restriction rule is
reproduced. [Hori-Romo '13]

Aq(o) = (¢ —5log5) o2 + (57 — sgn(o1)(0 + 27q))|o1]
—_——

Ceff

e (" > 0: 0, = 0 is admissible.
° ceff:0: —g<%+q<%
e Rgdland CY:

e We find four different windows corresponding to the four
inequivalent paths.

e We can verify the correct monodromy behavior for the paths
around the three conifold points.

e In the strongly coupled Pfaffian phase, there is a grade
restriction rule deep inside the phase.
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How to grade restrict?

e Paths in the moduli space <= window of allowed charges

e Grade restriction: replace a brane B outside the window by an
equivalent one B that is the same in a given phase A
e Empty branes: branes Bé that reduce to “nothing” in a
specific phase A
o Z5,(BA)=0
e (1, Qs...empty branes in the LG/Pfaffian, Q.. ..empty brane
in the geometric phase

e B and a bound state B= B % B2 (tachyon condensation)
reduce to the same brane in phase A
e Binding empty branes changes the gauge charges
o Use empty branes to grade restrict to a given charge window
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GLSM and Monodromy

e We can compute the monodromy of a D-brane by

transporting it along a non-contractible loop in the moduli

space [Herbst-Hori-Page '08]

e Monodromy inside a phase: #-angle shift by 2w <> shift of
gauge charges of the brane by +1

e Monodromy across a phase boundary: grade restrict with
respect to adjacent window

¢
e
L] l L] L]
% ‘ i i )
—(NA2K)m | —(N+2k—2)7 | —(N+3k—4)7
~ J
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Zp2 and Monodromy

e We can read off monodromy matrices from the brane factors
of the hemisphere partition function in the GLSM

[Romo-Scheidegger-JK "16][Erkinger-JK '17]

e Recipe:

1.

ok wDd

Choose a reference path/window

Take a brane grade B restricted to a path

Perform the monodromy operation with image brane B’ B
Grade restrict back to the reference window to get a brane B’
Read off the the monodromy matrix Mj; from the brane factors

fa = Z M;;f,
J

e Explicit examples for one-parameter hypersurfaces

o Also works for the Rgdland example.
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Zp2 in non-geometric phases

e In geometric phases Zp2 computes the quantum corrected
central charge of the D-brane.
e What about Landau-Ginzburg orbifold phases?
[Lerche-Vafa-Warner '89][Intriligator-Vafa '90][Fan-Jarvis-Ruan-Witten][Chiodo-Iritani-Ruan]

e In one-parameter models with a LG-phase the hemisphere
partition function computes [Romo-Scheidegger-JK]

Z5$ = </FJRW7 Frsrw © Ch(Q))

Iesrw - .. I-Function (periods)
IEjrwy - .. Gamma-class
ch(Q) ... Chern character [Walcher 04]

(,+) ... pairing
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Landau-Ginzburg Central Charge (ctd.)

Show that Zp2 reduces to this in the LG phase.

Works for a basis of branes/periods on the quintic.

Generalization to two-parameter models seems to work.

Does it define a stability condition?
[Douglas-Fiol-Rémelsberger '00][Aspinwall-Douglas '01][Douglas '02][Bridgeland)]

At the Landau-Ginzburg point this should reduce to
R-sta bi|ity [Walcher '04]

e Compare stable vs. unstable configurations of branes and their
bound states.
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Summary

e GLSMs are useful physics tools to study CYs and their moduli
spaces.

e Non-abelian GLSMs lead to exotic CY's that are not complete
intersections in toric ambient spaces.

e Supersymmetric localization gave us new tools to calculate
quantum corrections in CY compactifications.

e Without mirror symmetry
e Applies to “exotic” CYs: determinantal varieties, etc.
e Applies also to “exotic” phases: strongly coupled, hybrid, etc.

e The hemisphere partition function computes the quantum
corrected central charge of a D-brane
e D-brane transport and monodromies
e Landau-Ginzburg central charge
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Open Problems

e Systematic construction of exotic CYs via non-abelian GLSMs
e Higher rank gauge groups
e Exotic matter [Galkin's talk]
e Central charge in non-geometric phases.

e Hemisphere partition function as ( “global”) stability condition?
e Analytic continuation of periods of CYs with more than one
conifold point [Romo-Scheidegger-JK][Klemm's talk]

e Better understanding of hybrid phases
e D-branes and D-brane transport on exotic CYs
e Mirror symmetry for exotic CYs

e Relation to localization results in higher dimensions and
implications for CY physics
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