RG Flows Across Dimensions and Holography

Nikolay Bobev

Instituut voor Theoretische Fysica
KU Leuven

Geometry of String and Gauge Theories, CERN July 202017
$1211.4030 \quad 1302.4451 \quad 1403.7131 \quad 1511.094621707 .04257$ + to appear

Francesco Benini, P. Marcos Crichigno
Francesco Azzurli, Vincent Min, Krzysztof Pilch, Orestis
Vasilakis, Alberto Zaffaroni

RG flows across dimensions

Consider a QFT on $M_{d}=\mathbb{R}^{p} \times \mathcal{M}_{d-p}$ and flow to the IR:

RG flows across dimensions

Consider a QFT on $M_{d}=\mathbb{R}^{p} \times \mathcal{M}_{d-p}$ and flow to the IR:

Questions:

- What are the properties of such RG flows?
- What is the p-dimensional QFT at low energies?
- Quantitative tools to study these systems?

RG flows across dimensions

Consider a QFT on $M_{d}=\mathbb{R}^{p} \times \mathcal{M}_{d-p}$ and flow to the IR:

Questions:

- What are the properties of such RG flows?
- What is the p-dimensional QFT at low energies?
- Quantitative tools to study these systems?

Employ supersymmetry to simplify the problem.

Motivation

- Construct and explore large classes of interacting p-dimensional superconformal field theories (SCFTs) obtained from a d-dimensional theory "compactified" on the manifold \mathcal{M}_{d-p}. [Vafa-Witten], [Witten],
[Bershadsky-Johansen-Sadov-Vafa], [Klemm-Lerche-Mayr-Vafa-Warner], [Maldacena-Núñez], [Kapustin],
[Gaiotto], [Gaiotto-Moore-Neitzke], [Dimofte-Gukov-Gaiotto], [Cecotti-Córdova-Vafa],
[Gadde-Gukov-Putrov], [Benini-NB], [Bah-Beem-NB-Wecht], ...

Motivation

- Construct and explore large classes of interacting p-dimensional superconformal field theories (SCFTs) obtained from a d-dimensional theory "compactified" on the manifold \mathcal{M}_{d-p}. [Vafa-Witten], [Witten],
[Bershadsky-Johansen-Sadov-Vafa], [Klemm-Lerche-Mayr-Vafa-Warner], [Maldacena-Núñez], [Kapustin],
[Gaiotto], [Gaiotto-Moore-Neitzke], [Dimofte-Gukov-Gaiotto], [Cecotti-Córdova-Vafa],
[Gadde-Gukov-Putrov], [Benini-NB], [Bah-Beem-NB-Wecht], ...
- This setup leads to interesting "correpondences" between the p-dimensional SCFT and a ("topological") theory on \mathcal{M}_{d-p}.
[Alday-Gaiotto-Tachikawa], [Gadde-Pomoni-Rastelli-Razamat], [Dimofte-Gaiotto-Gukov],
[Cecotti-Córdova-Vafa], ..

Motivation

- Construct and explore large classes of interacting p-dimensional superconformal field theories (SCFTs) obtained from a d-dimensional theory "compactified" on the manifold \mathcal{M}_{d-p}. [Vafa-Witten], [Witten],
[Bershadsky-Johansen-Sadov-Vafa], [Klemm-Lerche-Mayr-Vafa-Warner], [Maldacena-Núñez], [Kapustin],
[Gaiotto], [Gaiotto-Moore-Neitzke], [Dimofte-Gukov-Gaiotto], [Cecotti-Córdova-Vafa],
[Gadde-Gukov-Putrov], [Benini-NB], [Bah-Beem-NB-Wecht], ...
- This setup leads to interesting "correpondences" between the p-dimensional SCFT and a ("topological") theory on \mathcal{M}_{d-p}. [Alday-Gaiotto-Tachikawa], [Gadde-Pomoni-Rastelli-Razamat], [Dimofte-Gaiotto-Gukov], [Cecotti-Córdova-Vafa]. .
- Obtain insight into the original d-dimensional theory and RG flows across dimensions.

Motivation

- Construct and explore large classes of interacting p-dimensional superconformal field theories (SCFTs) obtained from a d-dimensional theory "compactified" on the manifold \mathcal{M}_{d-p}. [Vafa-Witten], [Witten],

```
[Bershadsky-Johansen-Sadov-Vafa], [Klemm-Lerche-Mayr-Vafa-Warner], [Maldacena-Núñez], [Kapustin],
```

[Gaiotto], [Gaiotto-Moore-Neitzke], [Dimofte-Gukov-Gaiotto], [Cecotti-Córdova-Vafa],
[Gadde-Gukov-Putrov], [Benini-NB], [Bah-Beem-NB-Wecht], ...

- This setup leads to interesting "correpondences" between the p-dimensional SCFT and a ("topological") theory on \mathcal{M}_{d-p}.
[Alday-Gaiotto-Tachikawa], [Gadde-Pomoni-Rastelli-Razamat], [Dimofte-Gaiotto-Gukov], [Cecotti-Córdova-Vafa], .
- Obtain insight into the original d-dimensional theory and RG flows across dimensions.
- The p-dimensional SCFTs typically admit a "large N " limit and have holographic duals which can be explicitly constructed. New examples of AdS/CFT. [Maldacena-Núñez],

Tools

- Anomaly matching ['t Hooft]
- Anomaly polynomials [Alvarez-Gaumé-Ginsparg], [Witten], [Harvey-Minasian-Moore], ...
- Topological twists [Witten], ...
- a-maximization [Intriligator-Wecht], F-maximization [Jafferis], [Closset-Dumitrescu-Fesctuccia-Komargodski-Seiberg], c-extremization [Benini-NB]
- Supersymmetric lozalization [Witten], [Moore], [Nekrasov], [Pestun],...
- Unitarity bounds [Hofman-Maldacena]
- Wrapped branes [Bershadsky-Sadov-Vafa], [Maldacena-Núñez], [Gauntlett-Waldram et al.], ...
- Holography [Maldacena], [GKP], [Witten], ...

Tools

- Anomaly matching ['t Hooft]
- Anomaly polynomials [Alvarez-Gaumé-Ginsparg], [Witten], [Harvey-Minasian-Moore], ...
- Topological twists [Witten], ...
- a-maximization [Intriligator-Wecht], F-maximization [Jafferis], [Closset-Dumitrescu-Fesctuccia-Komargodski-Seiberg], c-extremization [Benini-NB]
- Supersymmetric lozalization [Witten], [Moore], [Nekrasov], [Pestun],...
- Unitarity bounds [Hofman-Maldacena]
- Wrapped branes [Bershadsky-Sadov-Vafa], [Maldacena-Núñez], [Gauntlett-Waldram et al.], ..
- Holography [Maldacena], [GKP], [Witten],

Disclaimer: Here I always take \mathcal{M}_{d-p} to be compact and (in holography) with an Einstein metric. Generalizations are possible and very interesting!
[Anderson-Beem-NB-Rastelli]; [Gaiotto-Maldacena], [Bah]

Holography

Holography is an important tool to deduce the existence of these RG flows and study their properties.

Holography

Holography is an important tool to deduce the existence of these RG flows and study their properties.

The holographic dual description is a domain wall (or black brane) interpolating between (asymptotically locally) $A d S_{d+1}$ and $A d S_{p+1}$. [Maldacena-Núñez], ...

Holography

Holography is an important tool to deduce the existence of these RG flows and study their properties.

The holographic dual description is a domain wall (or black brane) interpolating between (asymptotically locally) $A d S_{d+1}$ and $A d S_{p+1}$. [Maldacena-Núñez], ...

Numerous holographic RG flows of this type can be explicitly constructed and embedded in string theory by using branes wrapped on \mathcal{M}_{d-p}.

Universal flows across even dimensions

Universal flows across even dimensions

Universal flows across odd dimensions

- No 't Hooft anomalies \Rightarrow technically harder.

Universal flows across odd dimensions

- No 't Hooft anomalies \Rightarrow technically harder.
- Make progress using supersymmetric localization. [Kapustin-Willett-Yaakov], [Benini-Zaffaroni], [Closset-Kim], ...

Universal flows across odd dimensions

- No 't Hooft anomalies \Rightarrow technically harder.
- Make progress using supersymmetric localization. [Kapustin-Willett-Yaakov], [Benini-Zaffaroni], [Closset-Kim], ...

- In holography this maps to a (magnetically charged) black hole in $A d S_{4}$. Microscopic counting of the BH entropy!

4d $\mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

$4 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

Consider a general 4d $\mathcal{N}=1$ SCFTs on $\mathbb{R}^{2} \times \Sigma_{\mathfrak{g}}$ and perform a (partial) "topological twist", i.e. use the R-symmetry to cancel the space-time curvature [Witten]

$$
\mathcal{A}_{\mu}^{R}=-\frac{1}{4} \omega_{\mu}, \quad \rightarrow \quad \widetilde{\nabla}_{\mu} \epsilon=\left(\partial_{\mu}+\frac{1}{4} \omega_{\mu}+\mathcal{A}_{\mu}^{R}\right) \epsilon=\partial_{\mu} \epsilon=0
$$

$4 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

Consider a general 4d $\mathcal{N}=1$ SCFTs on $\mathbb{R}^{2} \times \Sigma_{\mathfrak{g}}$ and perform a (partial) "topological twist", i.e. use the R-symmetry to cancel the space-time curvature [Witten]

$$
\mathcal{A}_{\mu}^{R}=-\frac{1}{4} \omega_{\mu}, \quad \rightarrow \quad \widetilde{\nabla}_{\mu} \epsilon=\left(\partial_{\mu}+\frac{1}{4} \omega_{\mu}+\mathcal{A}_{\mu}^{R}\right) \epsilon=\partial_{\mu} \epsilon=0
$$

Generally the global symmetry group is $U(1)_{R} \times G_{F}$.

$4 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

Consider a general 4d $\mathcal{N}=1$ SCFTs on $\mathbb{R}^{2} \times \Sigma_{\mathfrak{g}}$ and perform a (partial) "topological twist", i.e. use the R-symmetry to cancel the space-time curvature [Witten]

$$
\mathcal{A}_{\mu}^{R}=-\frac{1}{4} \omega_{\mu}, \quad \rightarrow \quad \widetilde{\nabla}_{\mu} \epsilon=\left(\partial_{\mu}+\frac{1}{4} \omega_{\mu}+\mathcal{A}_{\mu}^{R}\right) \epsilon=\partial_{\mu} \epsilon=0
$$

Generally the global symmetry group is $U(1)_{R} \times G_{F}$.
Turn a background field only for \mathcal{A}_{μ}^{R} to preserve $2 \mathrm{~d} \mathcal{N}=(0,2)$ supersymmetry (ensure proper R-charge quantization on $\Sigma_{\mathfrak{g}}$)

A "universal twist" for many 4d $\mathcal{N}=1$ SCFTs.

$4 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

Consider a general 4d $\mathcal{N}=1$ SCFTs on $\mathbb{R}^{2} \times \Sigma_{\mathfrak{g}}$ and perform a (partial) "topological twist", i.e. use the R-symmetry to cancel the space-time curvature [Witten]

$$
\mathcal{A}_{\mu}^{R}=-\frac{1}{4} \omega_{\mu}, \quad \rightarrow \quad \widetilde{\nabla}_{\mu} \epsilon=\left(\partial_{\mu}+\frac{1}{4} \omega_{\mu}+\mathcal{A}_{\mu}^{R}\right) \epsilon=\partial_{\mu} \epsilon=0
$$

Generally the global symmetry group is $U(1)_{R} \times G_{F}$.
Turn a background field only for \mathcal{A}_{μ}^{R} to preserve $2 \mathrm{~d} \mathcal{N}=(0,2)$ supersymmetry (ensure proper R-charge quantization on $\Sigma_{\mathfrak{g}}$)

$$
\text { A "universal twist" for many } 4 \mathrm{~d} \mathcal{N}=1 \text { SCFTs. }
$$

General background fluxes in the Cartan of G_{F} do not break additional supersymmetry. The construction depends on the details of the $4 \mathrm{~d} \mathcal{N}=1$ theory, i.e. non-universal \rightarrow Rich families of $2 \mathrm{~d} \mathcal{N}=(0,2)$ SCFTs.
[Almuhairi-Polchinski], [Kutasov-Lin], [Franco-Lee-Vafa et al.], [Schäfer-Nameki-Weigand],
[Amariti-Cassia-Penati]...

$4 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

The anomaly polynomials in 4d and 2d are

$$
\begin{aligned}
& \mathcal{I}_{6}=\frac{k_{R R R}}{6} c_{1}\left(\mathcal{F}_{R}^{(4)}\right)^{3}-\frac{k_{R}}{24} c_{1}\left(\mathcal{F}_{R}^{(4)}\right) p_{1}\left(\mathcal{T}_{4}\right)+I_{6}^{F} \\
& \mathcal{I}_{4}=\frac{k_{R R}}{2} c_{1}\left(\mathcal{F}_{R}^{(2)}\right)^{2}-\frac{k}{24} p_{1}\left(\mathcal{T}_{2}\right)+I_{4}^{F}
\end{aligned}
$$

$4 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

The anomaly polynomials in 4d and 2d are

$$
\begin{aligned}
& \mathcal{I}_{6}=\frac{k_{R R R}}{6} c_{1}\left(\mathcal{F}_{R}^{(4)}\right)^{3}-\frac{k_{R}}{24} c_{1}\left(\mathcal{F}_{R}^{(4)}\right) p_{1}\left(\mathcal{T}_{4}\right)+I_{6}^{F} \\
& \mathcal{I}_{4}=\frac{k_{R R}}{2} c_{1}\left(\mathcal{F}_{R}^{(2)}\right)^{2}-\frac{k}{24} p_{1}\left(\mathcal{T}_{2}\right)+I_{4}^{F}
\end{aligned}
$$

Superconformal Ward identities relate conformal and 't Hooft anomalies
[Anselmi-Freedman-Grisaru-Johansen]
$a=\frac{9}{32} k_{R R R}-\frac{3}{32} k_{R}, \quad c=\frac{9}{32} k_{R R R}-\frac{5}{32} k_{R}, \quad c_{r}=3 k_{R R}, \quad c_{r}-c_{l}=k$.

$4 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

The anomaly polynomials in 4d and 2d are

$$
\begin{aligned}
& \mathcal{I}_{6}=\frac{k_{R R R}}{6} c_{1}\left(\mathcal{F}_{R}^{(4)}\right)^{3}-\frac{k_{R}}{24} c_{1}\left(\mathcal{F}_{R}^{(4)}\right) p_{1}\left(\mathcal{T}_{4}\right)+I_{6}^{F} \\
& \mathcal{I}_{4}=\frac{k_{R R}}{2} c_{1}\left(\mathcal{F}_{R}^{(2)}\right)^{2}-\frac{k}{24} p_{1}\left(\mathcal{T}_{2}\right)+I_{4}^{F}
\end{aligned}
$$

Superconformal Ward identities relate conformal and 't Hooft anomalies
[Anselmi-Freedman-Grisaru-Johansen]
$a=\frac{9}{32} k_{R R R}-\frac{3}{32} k_{R}, \quad c=\frac{9}{32} k_{R R R}-\frac{5}{32} k_{R}, \quad c_{r}=3 k_{R R}, \quad c_{r}-c_{l}=k$.
Use ($\kappa=1$ for $S^{2}, \kappa=0$ for T^{2}, and $\kappa=-1$ for H^{2})

$$
\mathcal{F}_{R}^{(4)} \rightarrow \mathcal{F}_{R}^{(2)}-\frac{\kappa}{2} t_{\mathfrak{g}}, \quad \text { and } \quad \mathcal{I}_{4}=\int_{\Sigma_{\mathfrak{g}}} \mathcal{I}_{6}
$$

to extract the 2d conformal anomalies

$$
\binom{c_{r}}{c_{l}}=\frac{16}{3}(\mathfrak{g}-1)\left(\begin{array}{cc}
5 & -3 \\
2 & 0
\end{array}\right)\binom{a}{c}
$$

$4 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\Sigma_{\mathfrak{g}}$

Comments:

- The R-charges have to be properly quantized (i.e. rational) in order to be able to perform the universal twist.
- Notice that 't Hooft anomaly matching amounts to

$$
k_{R R}=(\mathfrak{g}-1) k_{R R R}, \quad k=(\mathfrak{g}-1) k_{R}
$$

- Unitarity implies that $\mathfrak{g}>1$. In addition we should have

$$
\frac{3}{5}<\frac{a}{c}, \quad \text { compatible with } \quad \frac{1}{2} \leq \frac{a}{c} \leq \frac{3}{2} \quad \text { [Hofman-Maldacena] }
$$

Are there any interacting $4 \mathrm{~d} \mathcal{N}=1$ SCFTs with $\frac{1}{2}<\frac{a}{c}<\frac{3}{5}$?

- For $a=c$ we have $c_{r}=c_{l}=\frac{32}{3}(\mathfrak{g}-1) a$. To be tested holographically!

The holographic dual

The generality of the field theory construction suggests an universal treatment in supergravity.

The holographic dual

The generality of the field theory construction suggests an universal treatment in supergravity.

Use 5 d minimal $\mathcal{N}=2$ gauged supergravity.

$$
\left(g_{\mu \nu}, A_{\mu}\right), \quad \text { dual to } \quad\left(T_{\mu \nu}, j_{\mu}^{R}\right) .
$$

The holographic dual

The generality of the field theory construction suggests an universal treatment in supergravity.

Use 5 d minimal $\mathcal{N}=2$ gauged supergravity.

$$
\left(g_{\mu \nu}, A_{\mu}\right), \quad \text { dual to } \quad\left(T_{\mu \nu}, j_{\mu}^{R}\right) .
$$

There is a BPS black string solution of the 5d theory [Klemm-Sabra], [Benini-NB]

$$
d s^{2}=e^{2 f(r)}\left(-d t^{2}+d z^{2}+d r^{2}\right)+e^{2 h(r)} \frac{d x^{2}+d y^{2}}{y^{2}}, \quad A=\frac{d x}{y}
$$

- Analytic solution for $f(r)$ and $h(r)$. Here $\Sigma_{\mathfrak{g}}=\mathbb{H}^{2} / \Gamma$.
- Asymptotically locally $\operatorname{Ad} S_{5}$ background at $r \rightarrow \infty$.
- $A d S_{3} \times \Sigma_{\mathfrak{g}}$ background at $r \rightarrow 0$.

The holographic dual

Using standard holographic technology one finds

$$
c_{r}=c_{l}=\frac{3 L_{A d S_{3}}}{2 G_{N}^{(3)}}=\frac{32}{3}(\mathfrak{g}-1) \frac{\pi L_{A d S_{5}}^{3}}{8 G_{N}^{(5)}}=\frac{32}{3}(\mathfrak{g}-1) a .
$$

The holographic dual

Using standard holographic technology one finds

$$
c_{r}=c_{l}=\frac{3 L_{A d S_{3}}}{2 G_{N}^{(3)}}=\frac{32}{3}(\mathfrak{g}-1) \frac{\pi L_{A d S_{5}}^{3}}{8 G_{N}^{(5)}}=\frac{32}{3}(\mathfrak{g}-1) a
$$

Uplift of this simple solution to many distinct string and M-theory backgrounds by using supergravity uplift formulas. [Gauntlett-Varela]

Particular examples:

- IIB compactifications on $S E_{5}$ manifolds, i.e. $4 \mathrm{~d} \mathcal{N}=1$ quiver gauge theories. [Klebanov-Witten], [Morrison-Plesser], [Gauntlett-Martelli-Sparks-Waldram]...
- M-theory compactifications of the Maldacena-Núñez type, i.e. 4d $\mathcal{N}=1$ "class \mathcal{S} " SCFTs. [Bah-Beem-NB-Wecht]

$4 \mathrm{~d} \mathcal{N}=1$ on $\Sigma_{\mathfrak{g}}$

More general twists. Turn on fluxes for $G_{F} \rightarrow$ non-universal flows

$$
\mathcal{A}_{\text {back }}=\mathcal{A}^{R}+b_{i} \mathcal{A}^{i}, \quad \rightarrow \quad R_{I R}=R_{U V}+\epsilon_{i}(b) F^{i}
$$

Mixing between the flavor and R -symmetries along the RG flow!

$4 \mathrm{~d} \mathcal{N}=1$ on $\Sigma_{\mathfrak{g}}$

More general twists. Turn on fluxes for $G_{F} \rightarrow$ non-universal flows

$$
\mathcal{A}_{\mathrm{back}}=\mathcal{A}^{R}+b_{i} \mathcal{A}^{i}, \quad \rightarrow \quad R_{I R}=R_{U V}+\epsilon_{i}(b) F^{i}
$$

Mixing between the flavor and R-symmetries along the RG flow!

Consider a trial R-current $\Omega_{\mu}^{\mathrm{tr}}$

$$
\Omega_{\mu}^{\mathrm{tr}}(t)=\Omega_{\mu}+\sum_{i \neq R} t_{i} J_{\mu}^{i}
$$

$4 \mathrm{~d} \mathcal{N}=1$ on $\Sigma_{\mathfrak{g}}$

More general twists. Turn on fluxes for $G_{F} \rightarrow$ non-universal flows

$$
\mathcal{A}_{\text {back }}=\mathcal{A}^{R}+b_{i} \mathcal{A}^{i}, \quad \rightarrow \quad R_{I R}=R_{U V}+\epsilon_{i}(b) F^{i}
$$

Mixing between the flavor and R -symmetries along the RG flow!

Consider a trial R-current $\Omega_{\mu}^{\text {tr }}$

$$
\Omega_{\mu}^{\mathrm{tr}}(t)=\Omega_{\mu}+\sum_{i \neq R} t_{i} J_{\mu}^{i}
$$

Construct a trial $c_{r}^{\mathrm{tr}}(t)$ from the anomaly of the trial R-symmetry. For unitary SCFTs one finds c-extremization [Benini-NB]

$$
\frac{\partial c_{r}^{\mathrm{tr}}\left(t^{*}\right)}{\partial t^{i}}=0, \quad \forall i \neq R, \quad \rightarrow \quad c_{r}^{\mathrm{tr}}\left(t^{*}\right)=c_{r}
$$

Similar to a-maximization in 4 d and F-maximization in 3d. [Intriligator-Wecht],
[Jafferis], [Closset-Dumitrescu-Festuccia-Komargodski-Seiberg]

$4 \mathrm{~d} \mathcal{N}=1$ on $\Sigma_{\mathfrak{g}}$

Explicit examples from string theory: 4d $\mathcal{N}=1$ SCFTs from D3-branes at conical singularities [Klebanov-Witten], [Morrison-Plesser],...

$4 \mathrm{~d} \mathcal{N}=1$ on $\Sigma_{\mathfrak{g}}$

Explicit examples from string theory: 4d $\mathcal{N}=1$ SCFTs from D3-branes at conical singularities [Klebanov-Witten], [Morrison-Plesser],...

- Transverse space $\mathbb{R}_{+} \times \mathcal{M}_{5}=\mathcal{C}\left(\mathcal{M}_{5}\right)$.
- \mathcal{M}_{5} is Sasaki-Einstein $\Rightarrow \mathcal{C}\left(\mathcal{M}_{5}\right)$ is Calabi-Yau.
- $\mathcal{M}_{5}=S^{5} \Rightarrow \mathcal{N}=4$ SYM.
- $\mathcal{M}_{5}=Y^{1,0} \Rightarrow \mathcal{N}=1 \mathrm{KW}$.
- More examples based on $Y^{p, q}$
[Gauntlett-Martelli-Sparks-Waldram] and $d P_{n}$ surfaces.

One can analyze in the same way the Leigh-Strassler $\mathcal{N}=1$ mass deformation of $\mathcal{N}=4$ SYM. [Gubser-Freedman-Pilch-Warner], [NB-Pilch-Vasilakis]

A new feature: "Baryonic" and R-symmetries can mix along such RG flows.

Holographic description

Example: $Y^{p, 0}$ on $\Sigma_{\mathfrak{g}>1}$ with baryonic flux b (\mathbb{Z}_{p} orbifold of the KW theory).

Holographic description

Example: $Y^{p, 0}$ on $\Sigma_{\mathfrak{g}>1}$ with baryonic flux b (\mathbb{Z}_{p} orbifold of the KW theory).
Field theory: Apply anomaly matching and c-extremization to find

$$
c_{r}=\frac{32}{3}(\mathfrak{g}-1) a\left(Y^{p, 0}\right)+24(\mathfrak{g}-1) p^{3} b^{2} N^{2}-2 p(\mathfrak{g}-1)
$$

For $b=0 \rightarrow$ universal twist.

Holographic description

Example: $Y^{p, 0}$ on $\Sigma_{\mathfrak{g}>1}$ with baryonic flux b (\mathbb{Z}_{p} orbifold of the KW theory).
Field theory: Apply anomaly matching and c-extremization to find

$$
c_{r}=\frac{32}{3}(\mathfrak{g}-1) a\left(Y^{p, 0}\right)+24(\mathfrak{g}-1) p^{3} b^{2} N^{2}-2 p(\mathfrak{g}-1)
$$

For $b=0 \rightarrow$ universal twist.
IIB supergravity: Solve the IIB supergravity supersymmetry variations

$$
\begin{aligned}
& d s_{10}^{2}=d s_{\mathrm{AdS}_{3}}^{2}+\frac{v^{2}+v+1}{4 v} d s_{\Sigma_{\mathfrak{g}}}^{2}+\frac{v^{2}+v+1}{4(v+1)}\left[d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right. \\
& \left.\quad+\frac{1}{v}\left(d w^{2}+\sin ^{2} w d \nu^{2}\right)\right]+\frac{1}{4}\left(d \psi-\cos \theta d \phi-\cos w d \nu-\frac{d x_{1}}{x_{2}}\right)^{2}, \\
& G_{(5)}=\operatorname{vol}_{\mathrm{AdS}_{3}} \wedge\left(\frac{(v+1)^{2}}{2 v} \operatorname{vol}_{\Sigma_{\mathfrak{g}}}+\frac{1}{2(v+1)}\left(v^{2} \operatorname{vol}_{S_{\theta \phi}^{2}}+\frac{1}{v} \mathrm{vol}_{S_{w \nu}^{2}}\right)\right),
\end{aligned}
$$

where $v=\frac{1+4 p b}{1-4 p b}$.

Holographic description

Example: $Y^{p, 0}$ on $\Sigma_{\mathfrak{g}>1}$ with baryonic flux b (\mathbb{Z}_{p} orbifold of the KW theory).
Field theory: Apply anomaly matching and c-extremization to find

$$
c_{r}=\frac{32}{3}(\mathfrak{g}-1) a\left(Y^{p, 0}\right)+24(\mathfrak{g}-1) p^{3} b^{2} N^{2}-2 p(\mathfrak{g}-1)
$$

For $b=0 \rightarrow$ universal twist.
IIB supergravity: Solve the IIB supergravity supersymmetry variations

$$
\begin{aligned}
& d s_{10}^{2}=d s_{\mathrm{AdS}_{3}}^{2}+\frac{v^{2}+v+1}{4 v} d s_{\Sigma_{\mathfrak{g}}}^{2}+\frac{v^{2}+v+1}{4(v+1)}\left[d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right. \\
& \left.\quad+\frac{1}{v}\left(d w^{2}+\sin ^{2} w d \nu^{2}\right)\right]+\frac{1}{4}\left(d \psi-\cos \theta d \phi-\cos w d \nu-\frac{d x_{1}}{x_{2}}\right)^{2} \\
& G_{(5)}=\operatorname{vol}_{\mathrm{AdS}_{3}} \wedge\left(\frac{(v+1)^{2}}{2 v} \operatorname{vol}_{\Sigma_{\mathfrak{g}}}+\frac{1}{2(v+1)}\left(v^{2} \operatorname{vol}_{S_{\theta \phi}^{2}}+\frac{1}{v} \mathrm{vol}_{S_{w \nu}^{2}}\right)\right),
\end{aligned}
$$

where $v=\frac{1+4 p b}{1-4 p b}$.
The holographic central charge is

$$
c_{\text {sugra }}=\frac{32}{3}(\mathfrak{g}-1) a\left(Y^{p, 0}\right)+24(\mathfrak{g}-1) p^{3} b^{2} N^{2}
$$

4d $\mathcal{N}=2$ SCFTs on $\Sigma_{\mathfrak{g}}$

$4 \mathrm{~d} \mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

All 4d $\mathcal{N}=2$ SCFTs have $S U(2)_{R} \times U(1)_{r}$ R-symmetry. There are two "universal" twists. [Kapustin]

$4 \mathrm{~d} \mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

All 4d $\mathcal{N}=2$ SCFTs have $S U(2)_{R} \times U(1)_{r}$ R-symmetry. There are two "universal" twists. [Kapustin]

- α-twist with $\mathcal{N}=(2,2)$. Background flux for $U(1)_{R}$. The central charges are

$$
\binom{c_{r}}{c_{l}}=24(\mathfrak{g}-1)\left(\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right)\binom{a}{c} .
$$

$4 \mathrm{~d} \mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

All $4 \mathrm{~d} \mathcal{N}=2$ SCFTs have $S U(2)_{R} \times U(1)_{r}$ R-symmetry. There are two "universal" twists. [Kapustin]

- α-twist with $\mathcal{N}=(2,2)$. Background flux for $U(1)_{R}$. The central charges are

$$
\binom{c_{r}}{c_{l}}=24(\mathfrak{g}-1)\left(\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right)\binom{a}{c}
$$

- β-twist with $\mathcal{N}=(0,4)$. Background flux for $U(1)_{r}$. The central charges are

$$
\binom{c_{r}}{c_{l}}=24(\mathfrak{g}-1)\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right)\binom{a}{c} .
$$

Notice that $\frac{1}{3} \alpha+\frac{4}{3} \beta$ is the "universal" twist with $2 \mathrm{~d} \mathcal{N}=(0,2)$ supersymmetry.

$4 \mathrm{~d} \mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

Comments

- Unitarity implies that $\mathfrak{g}>1$ and

$$
\frac{1}{2}<\frac{a}{c}, \quad \text { compatible with the HM bound } \quad \frac{1}{2} \leq \frac{a}{c} \leq \frac{5}{4}
$$

$4 \mathrm{~d} \mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

Comments

- Unitarity implies that $\mathfrak{g}>1$ and

$$
\frac{1}{2}<\frac{a}{c}, \quad \text { compatible with the HM bound } \quad \frac{1}{2} \leq \frac{a}{c} \leq \frac{5}{4}
$$

- A curious relation between the α-twist and the Shapere-Tachikawa formula

$$
c_{l}=c_{r}=12(\mathfrak{g}-1)(2 a-c)=3(\mathfrak{g}-1) \sum_{i}\left(2 \Delta_{\mathcal{C}}^{(i)}-1\right)=3(\mathfrak{g}-1) d_{G}
$$

$4 \mathrm{~d} \mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

Comments

- Unitarity implies that $\mathfrak{g}>1$ and

$$
\frac{1}{2}<\frac{a}{c}, \quad \text { compatible with the HM bound } \quad \frac{1}{2} \leq \frac{a}{c} \leq \frac{5}{4}
$$

- A curious relation between the α-twist and the Shapere-Tachikawa formula

$$
c_{l}=c_{r}=12(\mathfrak{g}-1)(2 a-c)=3(\mathfrak{g}-1) \sum_{i}\left(2 \Delta_{\mathcal{C}}^{(i)}-1\right)=3(\mathfrak{g}-1) d_{G}
$$

- Holographic dual of the α-twist: a black string solution in minimal 5d $\mathcal{N}=4$ gauged supergravity with an $A d S_{3} \times \Sigma_{\mathfrak{g}}$ near horizon region. [Romans]

$4 \mathrm{~d} \mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

Comments

- Unitarity implies that $\mathfrak{g}>1$ and

$$
\frac{1}{2}<\frac{a}{c}, \quad \text { compatible with the HM bound } \quad \frac{1}{2} \leq \frac{a}{c} \leq \frac{5}{4}
$$

- A curious relation between the α-twist and the Shapere-Tachikawa formula

$$
c_{l}=c_{r}=12(\mathfrak{g}-1)(2 a-c)=3(\mathfrak{g}-1) \sum_{i}\left(2 \Delta_{\mathcal{C}}^{(i)}-1\right)=3(\mathfrak{g}-1) d_{G}
$$

- Holographic dual of the α-twist: a black string solution in minimal 5d $\mathcal{N}=4$ gauged supergravity with an $A d S_{3} \times \Sigma_{\mathfrak{g}}$ near horizon region. [Romans]
- Uplift of this solution to IIB and 11d supergravity. [Gauntlett-Varela] Reproduce the CFT central charges holographically.

$4 \mathrm{~d} \mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

Comments

- Unitarity implies that $\mathfrak{g}>1$ and

$$
\frac{1}{2}<\frac{a}{c}, \quad \text { compatible with the } \mathrm{HM} \text { bound } \quad \frac{1}{2} \leq \frac{a}{c} \leq \frac{5}{4}
$$

- A curious relation between the α-twist and the Shapere-Tachikawa formula

$$
c_{l}=c_{r}=12(\mathfrak{g}-1)(2 a-c)=3(\mathfrak{g}-1) \sum_{i}\left(2 \Delta_{\mathcal{C}}^{(i)}-1\right)=3(\mathfrak{g}-1) d_{G}
$$

- Holographic dual of the α-twist: a black string solution in minimal 5d $\mathcal{N}=4$ gauged supergravity with an $A d S_{3} \times \Sigma_{\mathfrak{g}}$ near horizon region. [Romans]
- Uplift of this solution to IIB and 11d supergravity. [Gauntlett-Varela] Reproduce the CFT central charges holographically.
- No $A d S_{3}$ solution for the β-twist. Maybe no normalizable vacuum? Similarities with the $\mathcal{N}=(4,4)$ twist of $4 \mathrm{~d} \mathcal{N}=4 \mathrm{SYM}$ where one finds a 2d σ-model onto the Hitchin moduli space [Bershadsky-Johansen-Sadov-Vafa]?

6d $\mathcal{N}=(2,0)$ SCFTs on 4-manifolds

6d $\mathcal{N}=(2,0)$ SCFTs on 4-manifolds

Use $\mathcal{I}_{4}=\int_{\mathcal{M}_{4}} \mathcal{I}_{8}$ to find

$$
\binom{c_{r}}{c_{l}}=\frac{1}{96}\left(P_{1}+2 \chi\right)\left(\begin{array}{cc}
63 & -27 \\
35 & -11
\end{array}\right)\binom{a_{6 d}}{c_{6 d}}
$$

6d $\mathcal{N}=(2,0)$ SCFTs on 4-manifolds

Use $\mathcal{I}_{4}=\int_{\mathcal{M}_{4}} \mathcal{I}_{8}$ to find

$$
\binom{c_{r}}{c_{l}}=\frac{1}{96}\left(P_{1}+2 \chi\right)\left(\begin{array}{cc}
63 & -27 \\
35 & -11
\end{array}\right)\binom{a_{6 d}}{c_{6 d}}
$$

There is an $A d S_{3} \times \mathcal{M}_{4}$ BPS solution of maximal 7d sugra for negatively curved \mathcal{M}_{4} with a Kähler-Einstein metric.

This can be uplifted to 11d supergravity to find the holographic central charge (note $c_{6 d}=7 a_{6 d} / 4$)

$$
c_{r}=\frac{21}{128}\left(P_{1}+2 \chi\right) a_{6 d}=\frac{21}{256 \pi^{2}} \operatorname{Vol}\left(\mathcal{M}_{4}\right) a_{6 d}
$$

6d $\mathcal{N}=(2,0)$ SCFTs on 4-manifolds

Use $\mathcal{I}_{4}=\int_{\mathcal{M}_{4}} \mathcal{I}_{8}$ to find

$$
\binom{c_{r}}{c_{l}}=\frac{1}{96}\left(P_{1}+2 \chi\right)\left(\begin{array}{cc}
63 & -27 \\
35 & -11
\end{array}\right)\binom{a_{6 d}}{c_{6 d}}
$$

There is an $A d S_{3} \times \mathcal{M}_{4}$ BPS solution of maximal 7d sugra for negatively curved \mathcal{M}_{4} with a Kähler-Einstein metric.

This can be uplifted to 11d supergravity to find the holographic central charge (note $c_{6 d}=7 a_{6 d} / 4$)

$$
c_{r}=\frac{21}{128}\left(P_{1}+2 \chi\right) a_{6 d}=\frac{21}{256 \pi^{2}} \operatorname{Vol}\left(\mathcal{M}_{4}\right) a_{6 d}
$$

Comments:

- This setup corresponds to M5-branes wrapped on a Kähler 4-cycle in $C Y_{4}$. Different from the MSW $\mathcal{N}=(0,4) \mathrm{CFT}$. [Maldacena-Strominger-Witten]
- Supergravity (once again) fixes the geometry of the 4d manifold. Why?

6d $\mathcal{N}=(2,0)$ SCFTs on 4-manifolds

Use $\mathcal{I}_{4}=\int_{\mathcal{M}_{4}} \mathcal{I}_{8}$ to find

$$
\binom{c_{r}}{c_{l}}=\frac{1}{96}\left(P_{1}+2 \chi\right)\left(\begin{array}{cc}
63 & -27 \\
35 & -11
\end{array}\right)\binom{a_{6 d}}{c_{6 d}}
$$

There is an $A d S_{3} \times \mathcal{M}_{4}$ BPS solution of maximal 7d sugra for negatively curved \mathcal{M}_{4} with a Kähler-Einstein metric.

This can be uplifted to 11d supergravity to find the holographic central charge (note $c_{6 d}=7 a_{6 d} / 4$)

$$
c_{r}=\frac{21}{128}\left(P_{1}+2 \chi\right) a_{6 d}=\frac{21}{256 \pi^{2}} \operatorname{Vol}\left(\mathcal{M}_{4}\right) a_{6 d}
$$

Comments:

- This setup corresponds to M5-branes wrapped on a Kähler 4-cycle in $C Y_{4}$. Different from the MSW $\mathcal{N}=(0,4) \mathrm{CFT}$. [Maldacena-Strominger-Witten]
- Supergravity (once again) fixes the geometry of the 4d manifold. Why?

There are many other possible twists for the $(2,0)$ theory on various \mathcal{M}_{4}. Generically one has to rely on c-extremization to compute the correct central charges. [Benini-NB], [Gadde-Gukov-Putrov]

3d $\mathcal{N}=2$ SCFTs on $\Sigma_{\mathfrak{g}}$

3d $\mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$
Consider 3d $\mathcal{N}=2$ SCFTs on $S^{1} \times \Sigma_{\mathfrak{g}}$. The global symmetry group is $U(1)_{R} \times G_{F}$.

3d $\mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

Consider 3d $\mathcal{N}=2$ SCFTs on $S^{1} \times \Sigma_{\mathfrak{g}}$. The global symmetry group is $U(1)_{R} \times G_{F}$.

Turn a background field only for \mathcal{A}_{μ}^{R} to preserve 2 supercharges in 1 d .

To study this theory use the "topologically twisted index" [Benini-Zaffaroni], [Closset-Kim], [Benini-Hristov-Zaffaroni]. Computed by localization in the same spirit as the S^{3} partition function. [Kapustin-Willett-Yaakov], [Drukker-Marino-Putrov],
[Jafferis-Klebanov-Pufu-Safdi]

3d $\mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

Consider 3d $\mathcal{N}=2$ SCFTs on $S^{1} \times \Sigma_{\mathfrak{g}}$. The global symmetry group is $U(1)_{R} \times G_{F}$.

Turn a background field only for \mathcal{A}_{μ}^{R} to preserve 2 supercharges in 1 d .
To study this theory use the "topologically twisted index" [Benini-Zaffaroni], [Closset-Kim], [Benini-Hristov-Zaffaroni]. Computed by localization in the same spirit as the S^{3} partition function. [Kapustin-Willett-Yaakov], [Drukker-Marino-Putrov],
[Jafferis-Klebanov-Pufu-Safdi]

At large N a simple relation between the two partition functions [Hosseini-Zaffaroni]
$F_{S^{1} \times \Sigma_{\mathfrak{g}}}\left(\Delta_{I}, \mathfrak{n}_{I}\right)=(\mathfrak{g}-1) F_{S^{3}}\left(\Delta_{I} / \pi\right)+\sum_{I}\left(\frac{\mathfrak{n}_{I}}{1-\mathfrak{g}}-\frac{\Delta_{I}}{\pi}\right) \frac{\pi}{2} \partial_{\Delta_{I}} F_{S^{3}}\left(\Delta_{I} / \pi\right)$
Where: $\Delta_{I} \rightarrow$ chemical potentials for global symmetries; $\mathfrak{n}_{I} \rightarrow$ magnetic charges.

3d $\mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

Consider 3d $\mathcal{N}=2$ SCFTs on $S^{1} \times \Sigma_{\mathfrak{g}}$. The global symmetry group is $U(1)_{R} \times G_{F}$.

Turn a background field only for \mathcal{A}_{μ}^{R} to preserve 2 supercharges in 1 d .
To study this theory use the "topologically twisted index" [Benini-Zaffaroni],
[Closset-Kim], [Benini-Hristov-Zaffaroni]. Computed by localization in the same spirit as the S^{3} partition function. [Kapustin-Willett-Yaakov], [Drukker-Marino-Putrov],
[Jafferis-Klebanov-Pufu-Safdi]

At large N a simple relation between the two partition functions [Hosseini-Zaffaroni]
$F_{S^{1} \times \Sigma_{\mathfrak{g}}}\left(\Delta_{I}, \mathfrak{n}_{I}\right)=(\mathfrak{g}-1) F_{S^{3}}\left(\Delta_{I} / \pi\right)+\sum_{I}\left(\frac{\mathfrak{n}_{I}}{1-\mathfrak{g}}-\frac{\Delta_{I}}{\pi}\right) \frac{\pi}{2} \partial_{\Delta_{I}} F_{S^{3}}\left(\Delta_{I} / \pi\right)$
Where: $\Delta_{I} \rightarrow$ chemical potentials for global symmetries; $\mathfrak{n}_{I} \rightarrow$ magnetic charges.

The universal twist amounts to: $\mathfrak{n}_{I}=(1-\mathfrak{g}) \Delta_{I} / \pi$

$$
F_{S^{1} \times \Sigma_{\mathfrak{g}}}=(\mathfrak{g}-1) F_{S^{3}}
$$

Black holes in $A d S_{4}$

A simple supersymmetric BH solution of 4d minimal gauged supergravity [Romans], [Caldarelli-Klemm]

$$
d s_{4}^{2}=-\left(\rho-\frac{1}{2 \rho}\right)^{2} d t^{2}+\left(\rho-\frac{1}{2 \rho}\right)^{-2} d \rho^{2}+\rho^{2} d s_{\Sigma_{\mathfrak{g}}}^{2}, \quad F=\frac{1}{2 \sqrt{2}} \operatorname{vol}_{\Sigma_{\mathfrak{g}}}
$$

Asymptotic to $A d S_{4}$ for $\rho \rightarrow \infty$ and to $A d S_{2} \times \Sigma_{\mathfrak{g}}$ for $\rho \rightarrow \frac{1}{\sqrt{2}}$.

Black holes in $A d S_{4}$

A simple supersymmetric BH solution of 4d minimal gauged supergravity [Romans], [Caldarelli-Klemm]

$$
d s_{4}^{2}=-\left(\rho-\frac{1}{2 \rho}\right)^{2} d t^{2}+\left(\rho-\frac{1}{2 \rho}\right)^{-2} d \rho^{2}+\rho^{2} d s_{\Sigma_{\mathfrak{g}}}^{2}, \quad F=\frac{1}{2 \sqrt{2}} \operatorname{vol}_{\Sigma_{\mathfrak{g}}}
$$

Asymptotic to $A d S_{4}$ for $\rho \rightarrow \infty$ and to $A d S_{2} \times \Sigma_{\mathfrak{g}}$ for $\rho \rightarrow \frac{1}{\sqrt{2}}$.
Uplift to M-theory: [Gauntlett-Kim-Waldram], [Gauntlett-Varela]

$$
d s_{11}^{2}=L^{2}\left(d s_{4}^{2}+16 d s_{\mathrm{SE}_{7}}^{2}\right), \quad G_{(4)} \neq 0
$$

Dual to M2-branes at conical singularities $\mathcal{C}\left(\mathcal{M}_{7}\right)$.

Black holes in $A d S_{4}$

A simple supersymmetric BH solution of 4d minimal gauged supergravity
[Romans], [Caldarelli-Klemm]

$$
d s_{4}^{2}=-\left(\rho-\frac{1}{2 \rho}\right)^{2} d t^{2}+\left(\rho-\frac{1}{2 \rho}\right)^{-2} d \rho^{2}+\rho^{2} d s_{\Sigma_{\mathfrak{g}}}^{2}, \quad F=\frac{1}{2 \sqrt{2}} \operatorname{vol}_{\Sigma_{\mathfrak{g}}}
$$

Asymptotic to $A d S_{4}$ for $\rho \rightarrow \infty$ and to $A d S_{2} \times \Sigma_{\mathfrak{g}}$ for $\rho \rightarrow \frac{1}{\sqrt{2}}$.
Uplift to M-theory: [Gauntlett-Kim-Waldram], [Gauntlett-Varela]

$$
d s_{11}^{2}=L^{2}\left(d s_{4}^{2}+16 d s_{\mathrm{SE}_{7}}^{2}\right), \quad G_{(4)} \neq 0
$$

Dual to M2-branes at conical singularities $\mathcal{C}\left(\mathcal{M}_{7}\right)$.
In massive IIA: a new solution! Deformation of a recently constructed $A d S_{4}$ vacuum in massive IIA [Guarino-Jafferis-Varela], [Fluder-Sparks]

$$
d s_{10}^{2}=e^{2 \lambda} L^{2}\left(d s_{4}^{2}+d s_{6}^{2}\right)
$$

with

$$
\begin{aligned}
d s_{6}^{2} & =\omega_{0}^{2}\left[e^{\varphi-2 \phi} X^{-1} d \alpha^{2}+\sin ^{2} \alpha\left(\Delta_{1}^{-1} d s_{\mathrm{KE}_{4}}^{2}+X^{-1} \Delta_{2}^{-1} \eta^{2}\right)\right] \\
e^{2 \lambda} & \equiv(\cos (2 \alpha)+3)^{1 / 2}(\cos (2 \alpha)+5)^{1 / 8}
\end{aligned}
$$

and $L, \omega_{0}, \varphi, \phi$ - constants. Nontrivial F_{2}, H_{3}, and F_{4} fluxes in massive IIA.
Large class of new massive IIA solutions with CFT duals.

3d $\mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

For the black hole entropy one finds

$$
S_{\mathrm{BH}}=\frac{\pi}{2 G_{N}^{(4)}}(\mathfrak{g}-1)=(\mathfrak{g}-1) F_{S^{3}}
$$

Thus $F_{S^{1} \times \Sigma_{\mathfrak{g}}}$ computes the entropy of these BHs!

3d $\mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

For the black hole entropy one finds

$$
S_{\mathrm{BH}}=\frac{\pi}{2 G_{N}^{(4)}}(\mathfrak{g}-1)=(\mathfrak{g}-1) F_{S^{3}}
$$

Thus $F_{S^{1} \times \Sigma_{\mathfrak{g}}}$ computes the entropy of these BHs !
The same universal results holds for $\mathcal{N}=2$ mass deformations of the ABJM theory. [Corrado-Pilch-Warner], [Jafferis-Klebanov-Pufu-Safdi], [NB-Min-Pilch]

3d $\mathcal{N}=2$ on $\Sigma_{\mathfrak{g}}$

For the black hole entropy one finds

$$
S_{\mathrm{BH}}=\frac{\pi}{2 G_{N}^{(4)}}(\mathfrak{g}-1)=(\mathfrak{g}-1) F_{S^{3}}
$$

Thus $F_{S^{1} \times \Sigma_{\mathfrak{g}}}$ computes the entropy of these BHs !
The same universal results holds for $\mathcal{N}=2$ mass deformations of the ABJM theory. [Corrado-Pilch-Warner], [Jafferis-Klebanov-Pufu-Safdi], [NB-Min-Pilch]

Comments:

- At large N one has $F_{S^{1} \times \Sigma_{\mathfrak{g}}} \sim N^{3 / 2}$ in M-theory and $F_{S^{1} \times \Sigma_{\mathfrak{g}}} \sim N^{5 / 3}$ in massive IIA.
- To generalize this setup turn on background flux for the G_{F} global symmetry of the CFT. Find the correct R-symmetry in the IR by extremizing the "twisted index". [Benini-Hristov-Zaffaroni]
- The holographic dual construction is realized by M2-branes at the tip of a conical singularity wrapping $\Sigma_{\mathfrak{g}}$. A large landscape of $A d S_{2}$ vacua in M-theory. [Azzurli-NB-Crichigno-Min-Zaffaroni]
- One can also add electric charges to these 4d black holes and modify correspondingly the "twisted index" [Benini-Hristov-Zaffaroni], [in progress]

Other flows

- This general setup is applicable to SCFTs in other dimensions and on other manifolds. A prominent example is the $6 \mathrm{~d}(2,0)$ theory on 4-manifolds. [Benini-NB], [Gadde-Gukov-Putrov], [Ganor]...
- The field theory tools are less developed for $5 \mathrm{~d} \mathcal{N}=1$ SCFTs on $\mathbb{R}^{3} \times \Sigma_{\mathfrak{g}}$ or $\mathbb{R}^{2} \times \mathcal{M}_{3}$ (absence of anomalies or localization results).
- A holographic analysis in "minimal" gauged supergravity always yields an AdS vacuum. Suggestive results and "predictions" from holography.
- Interpretation in terms of wrapped branes in string/M-theory.

Summary

- Evidence for many new SCFTs arising from RG flows across dimensions.
- Understanding of some of their properties through nonperturbative QFT tools.
- Explicit "top-down" holographic constructions that are dual to the SCFTs at hand.
- Useful spin-off: microscopic entropy counting for $A d S$ black holes.

Outlook

Many things to understand

Outlook

Many things to understand

- Field theory understanding of the large "zoo" of 2d SCFTs. Is there a " T_{N} type" building block? A "baby version" of AGT? The $(2,2)$ twist seems particularly curious.

Outlook

Many things to understand

- Field theory understanding of the large "zoo" of 2d SCFTs. Is there a " T_{N} type" building block? A "baby version" of AGT? The $(2,2)$ twist seems particularly curious.
- $1 / N$ corrections to the leading order holographic results. Possible for $A d S_{3}$ and $A d S_{5}$ vacua. [Baggio-Halmagyi-Mayerson-Robbins-Wecht] Important to understand this for the $A d S_{4}$ black holes.

Outlook

Many things to understand

- Field theory understanding of the large "zoo" of 2d SCFTs. Is there a " T_{N} type" building block? A "baby version" of AGT? The $(2,2)$ twist seems particularly curious.
- $1 / N$ corrections to the leading order holographic results. Possible for $A d S_{3}$ and $A d S_{5}$ vacua. [Baggio-Halmagyi-Mayerson-Robbins-Wecht] Important to understand this for the $A d S_{4}$ black holes.
- 5d SCFTs on $\mathbb{R}^{3} \times \Sigma_{\mathfrak{g}}$. Holography suggests a universal relation between $F_{S^{5}}$ and $F_{S^{3} \times \Sigma_{\mathfrak{g}}}$. Derivation in QFT from supersymmetric localization?

Outlook

Many things to understand

- Field theory understanding of the large "zoo" of 2d SCFTs. Is there a " T_{N} type" building block? A "baby version" of AGT? The $(2,2)$ twist seems particularly curious.
- $1 / N$ corrections to the leading order holographic results. Possible for $A d S_{3}$ and $A d S_{5}$ vacua. [Baggio-Halmagyi-Mayerson-Robbins-Wecht] Important to understand this for the $A d S_{4}$ black holes.
- 5d SCFTs on $\mathbb{R}^{3} \times \Sigma_{\mathfrak{g}}$. Holography suggests a universal relation between $F_{S^{5}}$ and $F_{S^{3} \times \Sigma_{\mathfrak{g}}}$. Derivation in QFT from supersymmetric localization?
- Flows between even and odd dimensions? Various universal flows suggested by holography [NB-Crichigno]. Insights from QFT?

Outlook

Many things to understand

- Field theory understanding of the large "zoo" of 2d SCFTs. Is there a " T_{N} type" building block? A "baby version" of AGT? The $(2,2)$ twist seems particularly curious.
- $1 / N$ corrections to the leading order holographic results. Possible for $A d S_{3}$ and $A d S_{5}$ vacua. [Baggio-Halmagyi-Mayerson-Robbins-Wecht] Important to understand this for the $A d S_{4}$ black holes.
- 5d SCFTs on $\mathbb{R}^{3} \times \Sigma_{\mathfrak{g}}$. Holography suggests a universal relation between $F_{S^{5}}$ and $F_{S^{3} \times \Sigma_{\mathfrak{g}}}$. Derivation in QFT from supersymmetric localization?
- Flows between even and odd dimensions? Various universal flows suggested by holography [NB-Crichigno]. Insights from QFT?
- Holographic duals of QFTs with a full topological twist?
[Benini-NB-Gautason-Hristov]

Outlook

Many things to understand

- Field theory understanding of the large "zoo" of 2d SCFTs. Is there a " T_{N} type" building block? A "baby version" of AGT? The $(2,2)$ twist seems particularly curious.
- $1 / N$ corrections to the leading order holographic results. Possible for $A d S_{3}$ and $A d S_{5}$ vacua. [Baggio-Halmagyi-Mayerson-Robbins-Wecht] Important to understand this for the $A d S_{4}$ black holes.
- 5d SCFTs on $\mathbb{R}^{3} \times \Sigma_{\mathfrak{g}}$. Holography suggests a universal relation between $F_{S^{5}}$ and $F_{S^{3} \times \Sigma_{\mathfrak{g}}}$. Derivation in QFT from supersymmetric localization?
- Flows between even and odd dimensions? Various universal flows suggested by holography [NB-Crichigno]. Insights from QFT?
- Holographic duals of QFTs with a full topological twist?
[Benini-NB-Gautason-Hristov]
- Holographic/geometric dual of c-extremization. Is there some "generalized volume" minimization? [Martelli-Sparks-Yau]

THANK YOU!

