Borel resummation and Perturbative series in Supersymmetric gauge theories

Masazumi Honda

(本多正純)

References:

- [1] M.H., "Borel Summability of Perturbative Series in 4D N=2 and 5D N=1 Supersymmetric Theories", PRL116, 211601(2016) (arXiv: 1603.06207 [hep-th])
- [2] M.H., "How to resum perturbative series in 3d N=2 Chern-Simons matter theories", PRD94, 025039 (2016) (arXiv:1604.08653 [hep-th])
- [3] M.H., to appear

Perturbative expansion in QFT

Typically non-convergent [Dyson '52]

— Naïve sum → ∞

Then,

what does perturbative series actually know?

General question in this talk

Perturbative series around saddle points:

$$\mathcal{O}(g) \simeq \sum_{\ell=0}^{\infty} c_{\ell}^{(0)} g^{\ell} + \sum_{I \in \text{saddles}} e^{-S_I(g)} \sum_{\ell=0}^{\infty} c_{\ell}^{(I)} g^{\ell}$$

Can we get the exact result by using the coefficients?

= What is a correct way to resum the perturbative series?(∼continuum definition of QFT?)

This talk = To answer this in SUSY gauge theories

A standard resummation

Borel transformation:

$$\mathcal{O}(g) \simeq \sum_{\ell=0}^{\infty} c_{\ell} g^{a+\ell}$$

(from Wikipedia)

Borel resummation (along θ):

$$S_{\theta}\mathcal{O}(g) = \int_0^{e^{i\theta}\infty} dt \ e^{-\frac{t}{g}} \ \mathcal{B}\mathcal{O}(t)$$
 (usually, θ =arg(g)=0)

Why Borel resummation may be nice

(Let us take θ =arg(g))

$$S_{\theta}\mathcal{O}(g) = \int_{0}^{e^{i\theta}\infty} dt \ e^{-\frac{t}{g}} \ \mathcal{B}\mathcal{O}(t) \qquad \mathcal{B}\mathcal{O}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}}{\Gamma(a+\ell)} t^{a+\ell-1}$$

1 Reproduce original perturbative series:

$$S_{\theta}\mathcal{O}(g) \simeq \sum_{\ell=0}^{\infty} \frac{c_{\ell}}{\Gamma(a+\ell)} \int_{0}^{e^{i\theta}\infty} dt \ t^{a+\ell-1} e^{-\frac{t}{g}} = \sum_{\ell=0}^{\infty} c_{\ell} g^{a+\ell}$$

Why Borel resummation may be nice

(Let us take θ =arg(g))

$$S_{\theta}\mathcal{O}(g) = \int_{0}^{e^{i\theta}\infty} dt \ e^{-\frac{t}{g}} \ \mathcal{B}\mathcal{O}(t) \qquad \mathcal{B}\mathcal{O}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}}{\Gamma(a+\ell)} t^{a+\ell-1}$$

Reproduce original perturbative series:

$$S_{\theta}\mathcal{O}(g) \simeq \sum_{\ell=0}^{\infty} \frac{c_{\ell}}{\Gamma(a+\ell)} \int_{0}^{e^{i\theta}\infty} dt \ t^{a+\ell-1} e^{-\frac{t}{g}} = \sum_{\ell=0}^{\infty} c_{\ell} g^{a+\ell}$$

- 2 Finite for any g if

 - Borel trans. is convergent
 Its analytic continuation does not have singularities along the contour

 3. The integration is finite

"Borel summable $(along \theta)$ "

related to exact result?

Expectations in typical QFT

('t Hooft '79

Non-Borel summable due to singularities along R₊

Borel plane:

(singularities of Borel trans.)

Expectations in typical QFT

['t Hooft '79]

Non-Borel summable due to singularities along R₊

Borel plane:

(singularities of Borel trans.)

Integral depends on a way to avoid singularities

Non-Borel summable due to singularities along R₊

Borel plane:

(singularities of Borel trans.)

Integral depends on a way to avoid singularities

$$S_{\theta=0}\mathcal{O}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} \ \mathcal{B}\mathcal{O}(t)$$
 (Residue) $\sim e^{-\frac{\sharp}{g}}$

More concrete questions

- When is perturbative series Borel summable? (along R₊)
- Given a theory, what is analytic property of Borel trans.?
- If Borel summable, how is Borel resum related to exact result?
- If non-Borel summable, what is a correct way to resum perturbative series?

This talk = To answer this in SUSY gauge theories

<u>Setups</u>

4d N=2 and 5d N=1 theories on sphere

—— expansion by g_{YM} around instanton b.g.

3d N=2 CS matter theories on sphere & lens sp.

—— expansion by inverse CS levels

Setups

- 4d N=2 and 5d N=1 theories on sphere
 - —— expansion by g_{YM} around instanton b.g.
- 3d N=2 CS matter theories on sphere & lens sp.
 - —— expansion by inverse CS levels

Here we study only localizable quantities.

Motivations:

- We can practically get much perturbative information
- We can also study perturbative series around nontrivial saddles
- We can check relation between resummation and exact results

Summary of main results

Results on 4d N=2 SUSY theories (w/8 susy)

Set up:

- •Theories w/ $\beta \le 0$ and Lagrangians $(Z_{S^4} < \infty)$
- Perturbative expansion by g_{YM}
 around fixed # of instanton/anti-inst.

Results on 4d N=2 SUSY theories (w/8 susy)

Set up:

- •Theories w/ $\beta \le 0$ and Lagrangians $(Z_{S^4} < \infty)$
- Perturbative expansion by g_{YM}
 around fixed # of instanton/anti-inst.

- Find explicit finite dimensional integral rep. of Borel trans. for various observables
- $^{\exists}$ Singularities only along R- \rightarrow Borel summable along R+ (for round S⁴)
- (Exact) = $\sum_{\text{instantons}}$ (Borel resum)

Examples

For SU(2) case,

$$\mathcal{B}Z_{S^4}^{(k,\overline{k})}(t) \propto a \cdot Z_{1-\mathsf{loop}}(a) Z_{\mathsf{Nek}}^{(k)}(a) Z_{\mathsf{Nek}}^{(\overline{k})}(a) \Big|_{a=\sqrt{t}}$$
 (anti-)instanton # Nekrasov partition func.

Ex.1) Pure SYM (trivial b.g.):

$$\mathcal{B}Z_{S^4}^{(0,0)}(t) \propto \sqrt{t} \prod_{n=1}^{\infty} \left(1 + \frac{4t}{n^2}\right)^{2n}$$

No singularities ←→ Convergent expansion

Ex.2) SQCD (trivial b.g.):

$$\mathcal{B}Z_{S^4}^{(0,0)}(t) \propto \sqrt{t} \prod_{n=1}^{\infty} \frac{\left(1 + \frac{4t}{n^2}\right)^{2n}}{\left(1 + \frac{t}{n^2}\right)^{2N_f n}}$$

<u>Interpretations</u>

Result:

[∃]Borel singularities only along R- in 4d N=2 SUSY theories

Agreement w/ recent conjecture on QCD-like theory

Confusion compared w/ usual story of resummation

Nontrivial consistency w/ a conjecture on QCD

Borel plane in typical gauge theory:

Conjecture: (IR renormalon) = (Combination of monopoles)

[Argyres-Unsal '12]

But there is no such solution for $\mathcal{N}=2$

[Popitz-Unsal]

No IR renormalon type singularities for $\mathcal{N}=2$?

Confusion?

Usually Borel singularities come from nontrivial saddles w/ the same topological numbers [cf. Lipatov '77, Argyres-Unsal '12]

Now we have
$$\int_{S^4} F \wedge F \propto k - \bar{k}$$

Confusion?

Usually Borel singularities come from nontrivial saddles w/ the same topological numbers [cf. Lipatov '77, Argyres-Unsal '12]

Now we have
$$\int_{S^4} F \wedge F \propto k - \bar{k}$$

For example, around trivial saddle, we expect

But we do not have such singularities.

Results on 3d N=2 SUSY Chern-Simons theories

(w/4SUSY)

Set up:

[M.H. '16]

- •General Chern-Simons (CS) theories coupled to matters $(Z_{S^3} < \infty)$
- Perturbative expansion by inverse CS levels

Results on 3d N=2 SUSY Chern-Simons theories

(w/ 4 SUSY)

Set up:

[M.H. '16]

- •General Chern-Simons (CS) theories coupled to matters $(Z_{S^3} < \infty)$
- Perturbative expansion by inverse CS levels

Result:

$$S_{\theta}I(g) = \int_{0}^{e^{i\theta}\infty} dt \ e^{-\frac{t}{g}} \ \mathcal{B}I(t)$$

- Find finite dimensional integral rep. of Borel trans.
- Usually non-Borel summable along R+
- But always Borel summable along (half-)imaginary axis
- (Borel resum. w/ $\theta = \pm \pi/2$) = (exact result)

Examples

For SU(2) case,

$$\mathcal{B}Z_{S^3}(t) \propto \sigma \cdot Z_{1-\mathsf{loop}}(\sigma) \Big|_{\sigma = \sqrt{i\mathsf{sgn}(k)t}}$$

Ex.1) Pure SUSY CS:

$$\mathcal{B}Z_{S^3}(t) \propto \sigma \cdot \sinh^2(\sigma) \Big|_{\sigma = \sqrt{i \operatorname{sgn}(k)t}}$$

No singularities ←→ Convergent expansion

Ex.2) SQCD w/ hypers and real mass:

$$\left. \mathcal{B} Z_{S^3}(t) \propto \frac{\sigma \cdot \sinh^2{(\sigma)}}{\left(\cosh{\frac{\sigma - m}{2}} \cosh{\frac{\sigma + m}{2}}\right)^{N_f}} \right|_{\sigma = \sqrt{i \mathrm{sgn}(k) t}}$$

Ex.2) SQCD w/ hypers and real mass

$$\left. \mathcal{B} Z_{S^3}(t) \propto \frac{\sigma \cdot \sinh^2{(\sigma)}}{\left(\cosh{\frac{\sigma - m}{2}} \cosh{\frac{\sigma + m}{2}}\right)^{N_f}} \right|_{\sigma = \sqrt{i \mathrm{sgn}(k) t}}$$

Interpretation of Borel singularities (3d)

[M.H., to appear]

All the singularities can be explained by

complexified SUSY solutions

which are not on original contour of path integral but formally satisfy SUSY conditions: $Q\lambda = 0$, $Q\psi = 0$

Interpretation of Borel singularities (3d)

[M.H., to appear]

All the singularities can be explained by

complexified SUSY solutions

which are not on original contour of path integral but formally satisfy SUSY conditions: $Q\lambda = 0$, $Q\psi = 0$

Indeed their actions agree residues:

$$e^{-S} \sim \text{Res} \left[\mathcal{BO}(t)\right]$$

The numbers also agree if we follow the rule:

1 solution

 \longleftrightarrow

Simple pole

n sols. w/ the same $S \longleftrightarrow$

Degree-n pole

Contents

- Introduction & Summary
- 2. 4d N=2 SUSY theories
- 3. 3d N=2 SUSY Chern-Simons matter theories
- 4. Interpretation of Borel singularities (3d)
- 5. Summary & Outlook

Partition function of Superconformal QCD on S4

SU(N) SQCD w/ 2N-fundamental hypermultiplets

Exact result by localization method:

[Pestun '07]

$$Z_{\text{SQCD}}(g,\theta) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g} \sum_{j=1}^{N} a_j^2} \tilde{Z}(a) Z_{\text{inst}}(g,\theta;a)$$

$$Z_{\text{inst}}(g,\theta;a) = \sum_{k,\bar{k}=0}^{\infty} e^{-\frac{k+\bar{k}}{g} + i(k-\bar{k})\theta} Z_{\text{inst}}^{(k,\bar{k})}(a)$$

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g} \sum_{j=1}^{N} a_j^2} \tilde{Z}(a) Z_{\text{inst}}^{(k,\bar{k})}(a)$$

We are interested in small-g expansion of this

We would like to study small-g expansion of

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g} \sum_{j=1}^{N} a_j^2} \tilde{Z}(a) Z_{\text{inst}}^{(k,\bar{k})}(a)$$

A naïve way:

- 1. Compute perturbative expansion at all orders
- 2. Compute Borel transformation
- 3. Look at its analytic property

Difficult, inappropriate for exploring infinite examples

We would like to study small-g expansion of

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g} \sum_{j=1}^N a_j^2} \tilde{Z}(a) Z_{\text{inst}}^{(k,\bar{k})}(a)$$

A naïve way: Our method:

- 1. Compute perturbative expansion at all orders
- 2. Compute Borel transformation Find Borel trans. hidden in localization formula
 - 3. Look at its analytic property

Borel trans. hidden in localization formula

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_{-\infty}^{\infty} d^N a \ e^{-\frac{1}{g} \sum_{j=1}^{N} a_j^2} \tilde{Z}(a) Z_{\text{inst}}^{(k,\bar{k})}(a)$$

Taking polar coordinate $a_i = \sqrt{t}\hat{x}_i$ w/ $(\hat{x}^i)^2 = 1$,

$$Z_{\text{SQCD}}^{(k,\overline{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\overline{k})}(t)$$

Similar to the Borel resummation formula!

Is this Borel transformation?

$$\left(f^{(k,\bar{k})}(t) = \int_{S^{N-1}} d^{N-1}\hat{x} \ h^{(k,\bar{k})}(t,\hat{x}), \ h^{(k,\bar{k})}(t,\hat{x}) = \tilde{Z}(a) Z_{\mathsf{inst}}^{(k,\bar{k})} \Big|_{a^i = \sqrt{t}\hat{x}^i} \right)$$

$$Z_{\text{SQCD}}^{(k,\overline{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\overline{k})}(t)$$

Is this Borel trans.?

More precisely, given
$$Z_{\mathsf{SQCD}}^{(k,\overline{k})}(g) \sim \sum_{\ell=0}^{\infty} c_{\ell}^{(k,\overline{k})} g^{\sharp+\ell}$$
,

$$f^{(k,\bar{k})}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}^{(k,\bar{k})}}{\Gamma(\sharp + \ell)} t^{\sharp + \ell - 1} ??$$

(analytic continuation)

We can prove that this is actually true.

Outline of Proof

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\bar{k})}(t) \qquad f^{(k,\bar{k})}(t) = \sum_{\ell=0}^\infty \frac{c_\ell^{(k,\bar{k})}}{\Gamma(\sharp + \ell)} t^{\sharp + \ell - 1} ??$$

$$f^{(k,\overline{k})}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}^{(k,\overline{k})}}{\Gamma(\sharp + \ell)} t^{\sharp + \ell - 1} ??$$

(1) Show $f^{(k,k)}(t)$ purely consists of convergent power series:

$$f^{(k,\bar{k})}(t) = \sum_{\ell=0}^{\infty} f_{\ell}^{(k,\bar{k})} t^{\sharp + \ell - 1}$$

(2) Laplace trans. guarantees $f_{\ell}^{(k,\bar{k})} = \frac{c_{\ell}^{(k,k)}}{\Gamma(H+\ell)}$

Outline of Proof

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\bar{k})}(t) \qquad f^{(k,\bar{k})}(t) = \sum_{\ell=0}^\infty \frac{c_\ell^{(k,\bar{k})}}{\Gamma(\sharp + \ell)} t^{\sharp + \ell - 1} ??$$

$$f^{(k,\overline{k})}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}^{(k,\overline{k})}}{\Gamma(\sharp + \ell)} t^{\sharp + \ell - 1} ??$$

(1) Show $f^{(k,k)}(t)$ purely consists of convergent power series:

$$f^{(k,\bar{k})}(t) = \sum_{\ell=0}^{\infty} f_{\ell}^{(k,\bar{k})} t^{\sharp + \ell - 1}$$

(2) Laplace trans. guarantees $f_{\ell}^{(k,\bar{k})} = \frac{c_{\ell}^{(k,\kappa)}}{\Gamma(H+\ell)}$

Proof of (1):

$$f^{(k,\bar{k})}(t) = \int_{S^{N-1}} d^{N-1}\hat{x} \ h^{(k,\bar{k})}(t,\hat{x})$$

- (a) Show $h^{(k,\bar{k})}(t,\hat{x})$ consists of convergent power series of t
- (b) Small-t expansion of $h^{(k,\bar{k})}(t,\hat{x})$ commutes w/ the integral (This is true if small-t expansion of $h^{(k,\bar{k})}(t,\hat{x})$ uniform convergent)

Analytic property of Borel trans.

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\bar{k})}(t), \ f^{(k,\bar{k})}(t) = \int_{S^{N-1}} d^{N-1}\hat{x} \ h^{(k,\bar{k})}(t,\hat{x})$$

For trivial b.g.,

$$h^{(0,0)}(t,\hat{x}) = \delta\left(\sum_{j} \hat{x}_{j}\right) \prod_{i < j} (\hat{x}_{i} - \hat{x}_{j})^{2} \prod_{n=1}^{\infty} \frac{\prod_{i < j} \left(1 + \frac{t(\hat{x}_{i} - \hat{x}_{j})^{2}}{n^{2}}\right)^{2n}}{\prod_{j} \left(1 + \frac{t(\hat{x}_{j})^{2}}{n^{2}}\right)^{2Nn}}$$

No singularities for $t \in R_{\perp} \implies Borel summable!!$

Non-zero instanton sector

$$Z_{\text{SQCD}}^{(k,\bar{k})}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} f^{(k,\bar{k})}(t), \quad f^{(k,\bar{k})}(t) = \int d^{N-1}\hat{x} \ h^{(k,\bar{k})}(t,\hat{x})$$

$$h^{(k,\bar{k})}(t,\hat{x}) = h^{(0,0)}(t,\hat{x})Z_{\text{inst}}^{(k,\bar{k})}(a = \sqrt{t}\hat{x})$$

Rational function of a, whose poles are not in real axis

[cf. Nekrasov '03]

Thus,

Borel trans. is not singular for t∈R₊

Borel summable!!

General theory w/ Lagrangians (&β≤0)

Suppose a theory w/ gauge group: $G = G_1 \times \cdots \times G_n$

$$Z_{S^4}(g,\theta) = \int_{-\infty}^{\infty} d^{|G|} a \ Z_{\mathsf{Cl}}(g;a) \tilde{Z}(a) Z_{\mathsf{inst}}(g,\theta;a)$$

$$Z_{\text{cl}}(g; a) = \exp\left[-\sum_{p=1}^{n} \frac{1}{g_p} \text{tr}(a^{(p)})^2\right]$$

Taking polar coordinate $a_i^{(p)} = \sqrt{t_p} \hat{x}_i^{(p)}$,

$$Z_{S^4}^{(\{k\},\{\bar{k}\})}(g) = \int_0^\infty d^n t \ e^{-\sum_p \frac{t_p}{g_p}} f^{(\{k\},\{\bar{k}\})}(t_1,\cdots,t_n)$$

Borel trans.

Borel summable!!

Remark on non-conformal case

- g_{YM} is running
 Here g_{YM} is at scale 1/R_{sphere}

For example, in pure SYM case,

[cf. Pestun '07]

$$e^{-\frac{8\pi^2}{g_{\text{YM}}^2}\text{tr}a^2} \cdot Z_{\text{1-loop}}^{\mathcal{N}=2^*}(a,m) \xrightarrow{mR_{S^4} \gg 1} e^{-\frac{8\pi^2}{\tilde{g}_{\text{YM}}^2}\text{tr}a^2} \cdot Z_{\text{1-loop}}^{\text{pure}\mathcal{N}=2}(a)$$

$$\frac{1}{\tilde{g}_{YM}^2} = \frac{1}{g_{YM}^2} - \frac{C_2}{8\pi^2} \log (mR_{S^4})$$

Relation to the exact result

We have shown

```
(Borel resum. in sector w/ fixed inst./anti-inst. #)
```

(Truncation of whole exact result to the same sector)

Thus,

(Exact result including full instanton corrections)

 $\sum_{k,\bar{k}}$ (Borel resummation)

Relation to (typical) resurgence scenario

Suppose perturbation around trivial saddle is non-Borel summable:

$$S_{\theta=0}\mathcal{O}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} \ \mathcal{B}\mathcal{O}(t)$$
 (Residue) $\sim e^{-\frac{\mathfrak{I}}{g}}$

Ambiguity!

But this ambiguity is cancelled by ambiguities of perturbations around different saddles.

Relation to resurgence scenario (Cont'd)

Canonical successful example = Quantum mechanics

[Bogomolny '80, Zinn-Justin '81]

$$\mathcal{O} = [1] \\ + [I] + [I^2] + [I^3] + \cdots \quad \text{instantons} \\ + [\bar{I}] + [\bar{I}^2] + [\bar{I}^3] + \cdots \quad \text{anti-instantons} \\ + [I\bar{I}] + [I^2\bar{I}^2] + [I^3\bar{I}^3] + \cdots \quad \text{inst.-anti-inst.} \\ + [I^2\bar{I}] + [I^3\bar{I}^2] + [I^4\bar{I}^3] + \cdots \\ + \cdots$$

Relation to resurgence scenario (Cont'd)

Canonical successful example = Quantum mechanics

[Bogomolny '80, Zinn-Justin '81]

$$\mathcal{O} = \boxed{1}$$

$$+ \boxed{I} + \boxed{I^2} + \boxed{I^3} + \cdots \quad \text{instantons}$$

$$+ \boxed{I} + \boxed{I^2} + \boxed{I^3} + \cdots \quad \text{anti-instantons}$$

$$+ \boxed{I} + \boxed{I} + \boxed{I^2} \boxed{I^2} + \boxed{I^3} \boxed{I^3} + \cdots \quad \text{inst.-anti-inst.}$$

$$+ \boxed{I^2} \boxed{I} + \boxed{I^3} \boxed{I^2} + \boxed{I^4} \boxed{I^3} + \cdots$$

$$+ \cdots$$

Ambiguities are cancelled between sectors w/ the same inst. #

Our result

(instanton #, anti-inst.#)

Every sector is Borel summable, unambiguous

Other observables

Supersymmetric Wilson loop on S⁴

$$W = P \exp\left[\oint ds \left(iA_{\mu} \dot{x}^{\mu} + \Phi \right) \right]$$

■ Bremsstrahrung function in SCFT on R⁴ [cf. Fiol-Gerchkovitz-Komargodski '15]

(Energy of quark) =
$$B \int dt \ \dot{a}^2$$

Extremal correlator in SCFT on R⁴

[cf. Gerchkovitz-Gomis-Ishtiaque -Karasik-Komargodski-Pufu '16]

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_n \bar{\mathcal{O}} \rangle$$

■ Partition function on squashed S⁴~SUSY Renyi entrory

[cf. Hama-Hosomichi, Nosaka-Terashima]

[cf. Nishioka-Yaakov '13, Crossley-Dyer-Sonner, Huang-Zhou]

3d N=2 SUSY CS matter theory

Partition function of CS adjoint SQCD on S³

$$\begin{array}{c} \text{U(N)}_k \text{ SQCD w/} & \begin{array}{c} \text{fundamental} \\ \text{anti-fundamental} \\ \text{adjoint} \end{array} & \begin{array}{c} \text{chiral multiplets} \end{array}$$

By localization method,

[Kapustin-Willett-Yaakov, Jafferis Hama-Hosomichi-Lee]

$$Z_{\text{SQCD}}(g) = \int_{-\infty}^{\infty} d^{N} \sigma \ e^{\frac{i \cdot \text{sgn}(k)}{g} \sum_{j=1}^{N} \sigma_{j}^{2}} \tilde{Z}(\sigma)$$
$$g \propto \frac{1}{|k|}$$

We are interested in small-g (large level) expansion of this

Borel trans. hidden in localization formula

$$Z_{\text{SQCD}}(g) = \int_{-\infty}^{\infty} d^N \sigma \ e^{\frac{i \cdot \text{sgn}(k)}{g} \sum_{j=1}^{N} \sigma_j^2} \tilde{Z}(\sigma)$$

Taking polar coordinate $\sigma_i = \sqrt{\tau} \hat{x}_i$

$$Z_{\text{SQCD}}(g) = \int_0^\infty d\tau \ e^{\frac{i \text{sgn}(k)}{g}\tau} f(\tau)$$
$$= i \text{sgn}(k) \int_0^{-i \text{sgn}(k)\infty} dt \ e^{-\frac{t}{g}} f(i \text{sgn}(k)t)$$

Similar to the Borel resummation formula but w/ different integral contour!

$$\left(f(\tau) = \int d^{N-1}\hat{x} \ h(\tau, \hat{x}), \quad h(\tau, \hat{x}) = \tilde{Z}(\sigma) \Big|_{\sigma^i = \sqrt{\tau}\hat{x}^i} \right)$$

$$Z_{\text{SQCD}}(g) = i \text{sgn}(k) \int_0^{-i \text{sgn}(k)\infty} dt \ e^{-\frac{t}{g}} f(i \text{sgn}(k)t)$$

Borel transformation?

By using the technique in 4d, we can actually prove

$$i\operatorname{sgn}(k)f(\tau) = \mathcal{B}Z_{\operatorname{SQCD}}(-i\operatorname{sgn}(k)\tau)$$

Namely,

$$Z_{\text{SQCD}}(g) = \int_0^{-i \text{sgn}(k)\infty} dt \ e^{-\frac{t}{g}} \mathcal{B} Z_{\text{SQCD}}(t)$$

Analytic property of Borel trans.

$$Z_{\text{SQCD}}(g) = \int_0^{-i \text{sgn}(k)\infty} dt \ e^{-\frac{t}{g}} \mathcal{B} Z_{\text{SQCD}}(t), \quad \mathcal{B} Z_{\text{SQCD}}(t) = \int_{S^{N-1}} d^{N-1} \hat{x} \ \tilde{Z} \left(\sigma = \sqrt{i \text{sgn}(k)t} \hat{x} \right)$$

$$\tilde{Z}(\sigma) = \prod_{j=1}^{N} \frac{s_1^{\bar{N}_f} \left(\sigma_j + i(1 - \bar{\Delta}_f)\right)}{s_1^{N_f} \left(\sigma_j - i(1 - \Delta_f)\right)} \frac{\prod_{i < j} 4 \sinh^2 \left(\pi(\sigma_i - \sigma_j)\right)}{\prod_{i,j} s_1^{N_a} \left(\sigma_i - \sigma_j - i(1 - \Delta_a)\right)}, \qquad s_1(z) = \prod_{n=1}^{\infty} \left(\frac{n - iz}{n + iz}\right)^n$$

Sufficient condition for Borel summability

= Absence of singularities along the contour in $\tilde{Z}(\sigma)$

Analytic property of Borel trans. (Cont'd)

- When we have adjoint matters,
 it would be non-Borel summable along R+
- But it is always Borel summable along $\theta = -\pi/2$

General 3d N=2 CS matter theory

Suppose a theory w/ gauge group: $G = G_1 \times \cdots \times G_n$

$$Z_{S^3}(g) = \int_{-\infty}^{\infty} d^{|G|} \sigma \ Z_{\text{Cl}}(g;\sigma) \tilde{Z}(\sigma)$$

$$Z_{\mathsf{cl}}(g; a) = \exp\left[\sum_{p=1}^{n} \frac{i \cdot \mathsf{sgn}(k_p)}{g_p} \mathsf{tr}(\sigma^{(p)})^2\right]$$

Taking polar coordinate $\sigma_i^{(p)} = \sqrt{\tau_p} \hat{x}_i^{(p)}$,

$$Z_{S^3}(g) = \left[\prod_{p=1}^n \int_0^{-i\operatorname{sgn}(k_p)\infty} d^n t \ e^{-\frac{t_p}{g_p}}\right] \mathcal{B} Z_{S^3}(t)$$

 \longrightarrow Borel summable along $\theta_p = -\frac{\operatorname{sgn}(k_p)\pi}{2}$

Relation to the exact result

We have shown

$$Z_{S^3}(g) = \left[\prod_{p=1}^n \int_0^{-i \operatorname{sgn}(k_p) \infty} d^n t \ e^{-\frac{t_p}{g_p}} \right] \mathcal{B} Z_{S^3}(t)$$

Thus,

(Borel resummation along the directions)

Other observables

•SUSY Wilson loop on S³:

$$W = P \exp\left[\oint ds \left(iA_{\mu} \dot{x}^{\mu} + \Phi \right) \right]$$

- Bremsstrahrung function in SCFT on R³ [cf. Lewkowycz-Maldacena '13]
- 2-pt. function of U(1) flavor current in SCFT
- 2-pt. function of stress tensor in SCFT
- Partition function on squashed S³ ~ SUSY Renyi entropy
- Partition function on squashed lens space

Interpretation of singularities (3d)

[M.H., to appear]

$$Z(g) = \int D\Phi e^{-\frac{1}{g}S[\Phi]} \simeq \sum_{\ell} c_{\ell}g^{\ell}$$

[Lipatov '77]

Large order coefficient:

$$c_{\ell} = \frac{1}{2\pi i} \oint \frac{dg}{g^{\ell+1}} Z(g) = \frac{1}{2\pi i} \oint dg \int D\phi e^{-\frac{1}{g}S[\phi] - (\ell+1)\ln g} \qquad (\ell \to \infty)$$

$$Z(g) = \int D\Phi e^{-\frac{1}{g}S[\Phi]} \simeq \sum_{\ell} c_{\ell}g^{\ell}$$
 [Lipatov'77]

Large order coefficient:

$$c_{\ell} = \frac{1}{2\pi i} \oint \frac{dg}{g^{\ell+1}} Z(g) = \frac{1}{2\pi i} \oint dg \int D\phi e^{-\frac{1}{g}S[\phi] - (\ell+1) \ln g} \qquad (\ell \to \infty)$$

$$\simeq e^{-\frac{1}{g_*}S[\phi_*] - (\ell+1) \ln g_*} \qquad \left(\frac{\delta S}{\delta \phi} \Big|_{\phi = \phi_*} = 0, \ -\frac{1}{g_*^2}S[\phi_*] + \frac{\ell+1}{g_*} = 0 \right)$$

$$Z(g) = \int D\Phi e^{-\frac{1}{g}S[\Phi]} \simeq \sum_{\ell} c_{\ell}g^{\ell}$$
 [Lipatov '77]

Large order coefficient:

$$c_{\ell} = \frac{1}{2\pi i} \oint \frac{dg}{g^{\ell+1}} Z(g) = \frac{1}{2\pi i} \oint dg \int D\phi e^{-\frac{1}{g}S[\phi] - (\ell+1) \ln g} \qquad (\ell \to \infty)$$

$$\simeq e^{-\frac{1}{g_*}S[\phi_*] - (\ell+1) \ln g_*} \qquad \left(\left. \frac{\delta S}{\delta \phi} \right|_{\phi = \phi_*} = 0, \, -\frac{1}{g_*^2}S[\phi_*] + \frac{\ell+1}{g_*} = 0 \right.$$

$$= e^{(\ell+1) \ln(\ell+1) - (\ell+1)} \left(S[\phi_*] \right)^{-(\ell+1)} \simeq \ell! \left(S[\phi_*] \right)^{-(\ell+1)}$$

$$Z(g) = \int D\Phi e^{-\frac{1}{g}S[\Phi]} \simeq \sum_{\ell} c_{\ell}g^{\ell}$$

[Lipatov '77]

Large order coefficient:

$$c_{\ell} = \frac{1}{2\pi i} \oint \frac{dg}{g^{\ell+1}} Z(g) = \frac{1}{2\pi i} \oint dg \int D\phi e^{-\frac{1}{g}S[\phi] - (\ell+1)\ln g} \qquad (\ell \to \infty)$$

$$= e^{(\ell+1)\ln(\ell+1) - (\ell+1)} (S[\phi_*])^{-(\ell+1)} \simeq \ell! (S[\phi_*])^{-(\ell+1)}$$

 $\begin{array}{c}
\downarrow \\
S[\phi_*]
\end{array}$

Nontrivial saddle point gives Borel singularities

Interpretation of poles (3d ellipsoid case)

All the poles are explained by complexified SUSY solutions:

$$\begin{cases}
0 = Q\lambda = \left(\frac{1}{2}\epsilon_{\mu\nu\rho}F^{\nu\rho} - D_{\mu}\sigma\right)\gamma^{\mu}\epsilon - iD\epsilon - \frac{i}{f(\vartheta)}\sigma\epsilon \\
0 = Q\psi = -\gamma^{\mu}\epsilon D_{\mu}\phi - \epsilon\sigma\phi - \frac{i\Delta}{f(\vartheta)}\epsilon\phi + i\bar{\epsilon}F,
\end{cases}$$

Especially, $\sigma \in \mathbf{R}$ on the original path integral contour.

Interpretation of poles (3d ellipsoid case)

All the poles are explained by complexified SUSY solutions:

$$\begin{cases}
0 = Q\lambda = \left(\frac{1}{2}\epsilon_{\mu\nu\rho}F^{\nu\rho} - D_{\mu}\sigma\right)\gamma^{\mu}\epsilon - iD\epsilon - \frac{i}{f(\vartheta)}\sigma\epsilon \\
0 = Q\psi = -\gamma^{\mu}\epsilon D_{\mu}\phi - \epsilon\sigma\phi - \frac{i\Delta}{f(\vartheta)}\epsilon\phi + i\bar{\epsilon}F,
\end{cases}$$

Especially, $\sigma \in \mathbf{R}$ on the original path integral contour.

If we relax this, we have

$$F_{\mu\nu} = 0, \quad D = -\frac{1}{f(\vartheta)}\sigma, \quad F = 0,$$

$$\sigma = -i\left(mb + nb^{-1} + \frac{b + b^{-1}}{2}\Delta\right), \quad \gamma^{\mu}\epsilon D_{\mu}\phi + \epsilon\sigma\phi + \frac{i\Delta}{f(\vartheta)}\epsilon\phi = 0$$

$$(m, n \in \mathbf{Z}_{\geq 0}, \ b \text{ : squashing parameter})$$

We can show

$$e^{-S} \sim \mathrm{Res}\left[\mathcal{B}Z_{S_b^3}(t)\right]$$

Summary & Outlook

<u>Summary</u>

How to resum perturbative series in SUSY gauge theories

4d N=2 theories:

- $^{\exists}$ Singularities only along R- \rightarrow Borel summable along R+ (for round S⁴)
- (Exact) = $\sum_{\text{instantons}}$ (Borel resum)

3d N=2 CS matter theories:

- Usually non-Borel summable along R+
- Always Borel summable along (half-)imaginary axis
- •(Exact result) =(Borel resummation along the direction)
- (Singularities) = (Complexified SUSY solutions)

Open questions

- Less SUSY case?
- Other observables? [For 't Hooft loop, M.H.-D.Yokoyama, in preparation]
- How can we see convergence in planar limit?
- Expansion by other parameters? (such as 1/N)

4d N=2 theories:

• Physical interpretation of poles in complex plane?

3d N=2 CS matter theories:

• Restriction to 3d N=4 case? [cf. Russo '12]

