The n_TOF Collaboration,
http://www.cern.ch/nTOF

The n_TOF facility: neutron beams for challenging measurements at CERN

Enrico Chiaveri
Spokesperson of n_TOF Collaboration
What is n_TOF?

• The n_TOF Collaboration was founded in 2001.
• Members as of September 2016:
 • 42 Institutions (from EU, US, IN, JP, RU and AU)
 • 117 scientists
 • 2 experimental areas at CERN (EAR1, EAR2 since 2014)

Motivations for neutron cross section measurements @ n_TOF

• Nuclear Waste Transmutation
• Medical Application
• Astrophysics
• Nuclear Physics

The goal of the nTOF is to provide unprecedented precision in neutron kinetic energy determination, which will in turn bring much-needed precision in neutron-induced cross-section measurements. Such measurements are vital for a range of studies in fields as diverse as nuclear technology, astrophysics and fundamental nuclear physics. The nTOF will provide neutron rates some three orders of magnitude higher than existing facilities, allowing measurements to be made more precisely and more rapidly than in the past.

CERN COURIER July 2nd 2001

E. Chiaveri
NuPECC CERN Mars 2017
n_TOF Timeline

1995-1997

TARC experiment

1997

E. Chiaveri

Concept by C. Rubbia
CERN/ET/Int. Note 97-19

Aug 1998

Proposal submitted

1999

Construction started

1998

Feasibility
CERN/LHC/98-02+Add

May 1998

Commissioning

2000

Problem Investigation

2001-2004

Phase I
Isotopes
Capture: 25
Fission: 11

2004-2007

New Target construction

2008

Phase II
Isotopes
Capture: 14
Fission: 3
(n,cp): 2

2009 - 2012

Commissioning

2010

Upgrades:
Borated-H2O
Second Line
Class-A

2014-2016

Phase III
Capture: 14
Fission: 4
(n,cp): 4

July 2014

Commissioning of EAR-2

2016

EAR2
Design and Construction

1995-1997

TARC experiment

1997

E. Chiaveri

Concept by C. Rubbia
CERN/ET/Int. Note 97-19

Aug 1998

Proposal submitted

1999

Construction started

1998

Feasibility
CERN/LHC/98-02+Add

May 1998

Commissioning

2000

Problem Investigation

2001-2004

Phase I
Isotopes
Capture: 25
Fission: 11

2004-2007

New Target construction

2008

Phase II
Isotopes
Capture: 14
Fission: 3
(n,cp): 2

2009 - 2012

Commissioning

2010

Upgrades:
Borated-H2O
Second Line
Class-A

2014-2016

Phase III
Capture: 14
Fission: 4
(n,cp): 4

July 2014

Commissioning of EAR-2

2016

EAR2
Design and Construction
C. Rubbia et al., *A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV*, CERN/LHC/98-02(EET) 1998.
The n_TOF Facility at CERN: a view

n_TOF 185 m flight path

Booster 1.4 GeV

PS 20 GeV

Linac 50 MeV

Proton Beam 20 GeV/c 7x10^{12} ppp

Pb Spallation Target

Neutron Beam 10° prod. angle

E. Chiaveri

NuPECC CERN Mars 2017
The n_TOF facility

- Main feature of n_TOF is the extremely high instantaneous neutron flux (10^5 n/cm2/pulse)
- Unique facility for measurements of radioactive isotopes (maximize S/N)
 - Branch point isotopes (astrophysics)
 - Actinides (nuclear technology)

Other features of the neutron beam:
- High resolution in energy ($\Delta E/E=10^{-4}$) → study resonances
- Large energy range (25 meV<$E_n<$1 GeV) → measure fission up to 1 GeV
- Low repetition rate (<0.8 Hz) → no wrap-around

E. Chiaveri
NuPECC CERN Mars 2017
N_TOF Beam Line

Entrance of n_TOF beam line

Escape line

EAR-1

E. Chiaveri
NuPECC CERN Mars 2017
The neutron Time Of Flight Facility: EAR1

E. Chiaveri
NuPECC CERN Mars 2017
n_TOF Data Acquisition System

- High instantaneous neutron flux
 - Several events for each neutron pulse expected + pile-up between
- Standard DAQ methods was largely inadequate at the beginning of experiment

- n_TOF DAQ based on **flash-ADC**:
 - **2001** 100 fADC channels (8bit), up to 1 GS/s
 - Full history of every detector digitized during time window of up to 80 ms
 - **2014** 132 fADC channels (12bit/14bit), up to 1.8 GS/s

- Offline signal reconstruction for time and charge
 - Pulse-shape fitting analysis (pile-up)
 - Simple algorithm for single signals

E. Chiaveri

NuPECC CERN Mars 2017
The raw material is similar to the one measured at DANCE (LANL), but chemical purification (PSI@Switzerland) has been carried out in order to eliminate the 2% Cu impurities: now “just” ^{62}Ni and ^{63}Ni (12%, 112 mg).

^{63}Ni (unstable) represents first branching point in s-process reaction path:

Highest uncertainty in $^{63,65}\text{Cu}$ abundances comes from unknown $^{63}\text{Ni}(n,\gamma)$ cross section

Until 2011, measurements so far ONLY at thermal energies:

- MACS are based on extrapolation of these cross sections from theoretical
- MACS at 30 keV:
 - KADoNiS: 31 ± 6 mb
 - TENDL(2009): 68.9 mb
 - Mengoni (th): 90.8 mb
EAR1 examples: $^{241}\text{Am}(n,\gamma)$

- **Half-life**: 432 y
- **Sample**: 32.2 mg
- **Activity**: 3 GBq

Measurements made with both C$_6$D$_6$ and TAC detectors, to minimize systematic uncertainties.

- First time that complete region is covered from thermal to MeV in a single measurement.
- Unprecedented resolution and statistics, to extend RRR above 150 eV, up to 320 eV.

E. Chiaveri

NuPECC CERN Mars 2017
The n_TOF Facility (2014)

Two experimental areas (EAR):
- Horizontal flight path: EAR1 at **182.5 m**
- Vertical flight path: EAR2 at **18.2 m**

Both beam lines have:
- 1st collimator: halo cleaning + first beam shaping.
- Filter station.
- Sweeping magnet.
- 2nd collimator: beam shaping.

Two experimental areas running in parallel.

E. Chiaveri
NuPECC CERN Mars 2017
n_TOF EAR2 advantages

- Neutron fluence is on average increased by a factor of 30
- Very small mass samples (<1 mg) could be measured
- Very small cross-section
- Much shorter time scale measurement
- Running in parallel with Experimental Area 1
Expected neutron flux at EAR2

- 30x higher neutron flux in EAR-2 with respect to EAR-1 (FLUKA simulation)
- 10x smaller neutron time arrival (10x shorter path)

⇒ 300x times higher neutron rate
Experimental result of n_TOF Flux

![Graph showing neutron flux vs. neutron energy (eV)](image)

- EAR1 neutron flux
- EAR2 neutron flux

E. Chiaveri
NuPECC CERN Mars 2017
The neutron Time Of Flight Facility: EAR2

E. Chiaveri

NuPECC CERN Mars 2017
But it was worth it, the dream became reality!!!!!
The Cosmological Lithium Problem

Bing Bang Nucleosynthesis (BBN), is one of the cornerstones for Bing Bang Theory.

BBN gives the sequence of nuclear reactions leading to the synthesis of light elements up to Na in the early stage of Universe (0.01-1000 sec)

BBN successfully predicts the abundances of primordial elements such as 4He, D and 3He.

A serious discrepancy (factor 2-3) between the predicted abundance of 7Li and the value inferred by measurements → Cosmological Lithium Problem (CLiP)

95% of primordial 7Li is produced from the Electron Capture decay of 7Be ($T_{1/2}=53.2\text{ d}$)

A higher destruction rate of 7Be can solve or at least partially explain the CLiP.

No direct measurement data (so far) in the neutron energy range of interest for BBN

E. Chiaveri NuPECC CERN Mars 2017
EAR2 measurement of 7Be(n,cp)

The 7Be can be destroyed via:

- $n + ^7$Be $\rightarrow \alpha + \alpha$
 - Measured at n_TOF in 2015
- $n + ^7$Be $\rightarrow p + ^7$Li
 - Measured at n_TOF in 2016

n_TOF EAR2 is a unique facility to perform such experiment as the higher flux allows to:
- Measure short-lived radioisotopes ($T_{1/2} (^7$Be) ~ 53.2 d)
- Collect data on a much shorter time
- Measure samples of very small mass ($<< 1$ mg)

E. Chiaveri
NuPECC CERN Mars 2017
EAR2 measurement of 7Be(n,cp)

7Be(n,α)4He

40 GBq

7Be(n,p)7Li

1 GBq

First joint n_TOF-ISOLDE experiment

E. Chiaveri

NuPECC CERN Mars 2017
As for \((n,\alpha)\) measurement, the Cosmological Lithium Problem worsens! Stay tuned for \((n,p)\)…
EAR2 measurement of 240Pu(n,f)

• Measurement during Phase 2 in EAR1 not successful:
 1. Detector deterioration over time (2 years!).
 2. Spontaneous fission rate – dominant in sub-threshold region.

• New measurement in EAR2:
 ⇒ Higher flux = shorter measurement time.
 ⇒ Shorter time window per pulse = signals dominate over spontaneous fission.

• Samples from IRMM:
 Three 240PuO$_2$ (99.89%) deposits of 3 cm diameter on 0.25 mm Al backing: 25.7 MBq

• Reference samples:
 • 235U (~90μg/cm2)
 • 238U (~110μg/cm2)
• Measurement with MGAS detectors.
• Good α-FF separation.
• Many resonances visible in sub-threshold region.

240Pu(n,f) measurement successful in EAR2!

$L = 19.2 \text{ m}$

(2000 bins per energy decade)

\[
\text{Counts (arb. units)}
\]

\[
\text{Neutron energy (eV)}
\]

\[
\text{Counts (bunch)}
\]

\[
\text{Amplitude (ADC channels)}
\]
Medical implications of $^{33}\text{S}(n,\alpha)$ reaction

• The Neutron Capture Therapy (NCT) is an experimental binary therapy which combines neutron irradiation with the nuclear reactions produced on the target.

• The isotope widely use in this therapy is ^{10}B (Boron-NCT) due to its high (n,α) cross section at thermal energies – 3827 barn at 25 meV.

• ^{33}S has been studied as target for treating superficial tumours in NCT, or as a cooperative to ^{10}B for deeper ones, with epithermal (keV) neutron beams from accelerator-based BNCT facilities.

• Sulphur plays a very important biological role. High sulphur uptake has been found in many tumours by different compounds such as glutathione, thiouracil or cysteine.
Results

- From 1 meV up to 100 keV.
- \(1/v\) behaviour confirmed below 10 keV:
- For the first time the \(^{33}\)S\((n,\alpha)^{30}\)Si cross section at energies below 10 keV has been measured.

\[
y = \frac{(0.024 \pm 0.002) \text{ barn}}{\sqrt{E_n}}
\]

E. Chiaveri NuPECC CERN Mars 2017
Measurements performed at n_TOF

- **Fission 33**
- **Capture 56**
- **char. par. 8**

2002
- 234U
- 232Th
- 234U
- 238U
- 237Th
- 237Np

2003
- 186Os
- 187Os
- 188Os
- 90Zr
- 91Zr
- 92Zr
- 94Zr
- 24Mg
- 26Mg
- 209Bi
- 232Th

2004
- 237Np
- 233U
- 234U
- 236U
- 237Np
- 234Th
- 233Am
- 234Am

2009
- 240Pu
- 236U
- 238U
- 237Th
- 235Th
- 233Am
- 234Am
- 62Ni
- 58Ni
- 62Ni
- 56Fe
- 54Fe
- 241Am

2010
- 243Am
- 235U
- 238U
- 237Th
- 235U
- 236U
- 237U
- 240Pu
- 238U
- 237Np
- 234Th
- 233Am
- 234Am
- 62Ni
- 56Fe
- 54Fe

2011
- 236U
- 238U
- 237Th
- 235U
- 236U
- 237Np
- 234Th
- 233Am
- 234Am
- 62Ni
- 56Fe
- 54Fe

2012
- 238U
- 238U
- 237Th
- 235U
- 236U
- 237Np
- 234Th
- 233Am
- 234Am
- 62Ni
- 56Fe
- 54Fe

2014
- 240Pu
- 242Pu
- 238U
- 237Np
- 234Th
- 233Am
- 234Am
- 62Ni
- 56Fe
- 54Fe

2015
- 244Pu
- 246Pu
- 237Np
- 234Th
- 233Am
- 234Am
- 62Ni
- 56Fe
- 54Fe

2016
- 240Pu
- 242Pu
- 238U
- 237Np
- 234Th
- 233Am
- 234Am
- 62Ni
- 56Fe
- 54Fe

2002 - 2009
- **Phase - I**

2010 - 2012
- **Phase - II**

2014 - 2016
- **Phase - III**

E. Chiaveri

NuPECC CERN Mars 2017
Conclusions

• There is need of **accurate new data** on neutron cross-section both for astrophysics and nuclear technology

• Since 2001, n_TOF is contributing to the **world efforts** aimed at collecting high quality data, mostly on capture and fission

• Main advantage of n_TOF is the **high instantaneous neutron flux**, **high performance detectors**, **high resolution in energy**, **large energy range**, **low repetition rate**

• **Improved background conditions** in EAR1 with the borated water system

• **The new EAR2 offers the unique opportunity to perform challenging measurements involving short-lived radioisotopes or sub-mg samples.**
n_TOF figures

117 Researchers

n_TOF figures

117 Researchers
42 Institutes

1 European Organization for Nuclear Research (CERN), Switzerland
2 University of Lodz, Poland
3 Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France
4 Technische Universität Wien, Austria
5 CEA Saclay, Irfu, Gif-sur-Yvette, France
6 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
7 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
8 Charles University, Prague, Czech Republic
9 University of Manchester, United Kingdom
10 University of Zagreb, Croatia
11 University of York, United Kingdom
12 University of Santiago de Compostela, Spain
13 Universitat Politècnica de Catalunya, Spain
14 Universidad de Sevilla, Spain
15 INFN Laboratori Nazionali del Sud, Catania, Italy
16 Dipartimento di Fisica, Università degli Studi di Bari, Italy
17 Instituto de Fisica Corpuscular, Universidad de Valencia, Spain
18 Paul Scherrer Institut (PSI), Villigen, Switzerland
19 Instituto Superior Técnico, Lisbon, Portugal
20 Joint Institute for Nuclear Research (JINR), Dubna, Russia
21 Goethe University Frankfurt, Germany
22 Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
23 Japan Atomic Energy Agency (JAEA), Tokai-mura, Japan
24 European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium
25 Karlsruhe Institute of Technology, Campus North, IKP, 76021 Karlsruhe, Germany
26 National Technical University of Athens, Greece
27 School of Physics and Astronomy, University of Edinburgh, United Kingdom
28 Agenzia nazionale per le nuove tecnologie (ENEA), Bologna, Italy
29 Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
30 Physikalisches-technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
31 Dipartimento di Fisica e Astronomia, Università di Bologna, Italy
32 Istituto Nazionale di Fisica Nucleare, Sezione di Legnaro, Italy
33 Consiglio Nazionale delle Ricerche, Bari, Italy
34 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy

35 Dipartimento di Fisica e Astronomia, Università di Catania, Italy
36 University of Ioannina, Greece
37 University of Vienna, Faculty of Physics, Vienna, Austria
38 University of Granada, Spain
39 Department of Physics, University of Basel, Switzerland
40 Centre for Astrophysics Research, University of Hertfordshire, United Kingdom
41 Bhabha Atomic Research Centre (BARC), India
42 Australian National University, Canberra, Australia

E. Chiaveri
NuPECC CERN Mars 2017
Thank you for your attention!

A bright future for neutron physics at CERN!
n_TOF beam production

n_TOF beam production: highest single bunch intensity
Issues related to single particle and collective effects

20 GeV/c

6 GeV/c

1.4 GeV

Injection flat bottom:
Indirec Space charge → Injection oscillations
Transient beam loading

Transition crossing
Transverse mode coupling instability
Transient beam loading

Bunch rotation before extraction

E. Chiaveri NuPECC CERN Mars 2017
Time-of-flight technique

• Time-of-flight is a technique used to determine the energy of neutrons from the time that they spend traveling from the point of production to the neutron converter:

Spallation target

\[TOF = (t - t_\gamma) + \frac{L}{c} \]

- \(t \): the arrival time of the signal to the detection system
- \(t_\gamma \): the time of the \(\gamma \)-flash
- \(L \): the geometrical distance between the sample-converter and the spallation target
- \(c \): the speed of light

• TOF is related to the energy of the incoming neutrons by means of:

\[E_n = mn \cdot c^2 \left(\frac{1}{\sqrt{1 - \left(\frac{L}{TOF \cdot c} \right)^2}} - 1 \right) \]
n_TOF basic characteristics

- **Average flux (n/sec)**
 - n_TOF average flux comparable to GELINA (with 30 m flight path)

- **Instantaneous flux (n/pulse)**
 - Very high instantaneous neutron flux
 - High proton intensity per pulse
 - Spallation process

- **Great advantage in measuring radioactive samples (improved S/N ratio)**

E. Chiaveri

NuPECC CERN Mars 2017
Comparison n_TOF - NFS: average neutron flux

- Water-moderated neutrons
- Neutrons in stellar environments \(kT = 5-100 \text{ keV} \)
- Neutrons from thermal fission

Neutron density

Average neutron flux \((n/cm^2/s/\ln(E)) \)

- \(n_{\text{TOF}} \) (L=185 m, f=0.4 Hz)
- NFS (L=5 m, f=880 kHz)
- NFS (L=20 m, f=220 kHz)
- NFS (L=30 m, f=150 kHz)

NuPECC CERN Mars 2017
Comparison n_TOF - NFS: instantaneous neutron flux

water-moderated neutrons
neutrons in stellar environments $k_B T = 5$-100 keV
neutrons from thermal fission

neutron density

neutron energy (eV)

水冷中性子

stellar environment $k_B T = 5$-100 keV
thermal fission

Comparison n_TOF - NFS: instantaneous neutron flux

n_TOF (L=185 m, f=0.4 Hz)
NFS (L=5 m, f=880 kHz)
NFS (L=20 m, f=220 kHz)
NFS (L=30 m, f=150 kHz)

E. Chiaveri
NuPECC CERN Mars 2017
Comparison n_TOF - NFS: average neutron flux

- Water-moderated neutrons
- Neutrons in stellar environments $kT = 5$-100 keV
- Neutrons from thermal fission

E. Chiaveri
Comparison n_TOF - NFS: instantaneous neutron flux

- Water-moderated neutrons
- Neutrons in stellar environments, $kT = 5$-100 keV
- Neutrons from thermal fission

E. Chiaveri