Outline

➢ Reminders of last time: Different physical SUSY sectors
➢ Deeper look in Higgs sector
➢ Getting into experimental feedback
➢ Exercises

Advised readings:
➢ “SUSY & Such” S. Dawson, arxiv:hep-ph/9612229v2
Quick reminders of last time
MSSM: Effective Lagrangian

- We don't know how SUSY is broken, but can write the most general broken effective Lagrangian
- Maximal dimension of soft operators: $\leq 3 \rightarrow$ Mass terms, Bilinear & Trilinear terms

\[-\mathcal{L}_{soft} = m_1^2 |H_1|^2 + m_2^2 |H_2|^2 - B \mu \epsilon_{ij}(H_i^i H_j^j + \text{h.c.}) + \tilde{M}_Q^2(\tilde{u}_L^* \tilde{u}_L + \tilde{d}_L^* \tilde{d}_L) \]
\[+ \tilde{M}_u^2 \tilde{u}_R^* \tilde{u}_R + \tilde{M}_d^2 \tilde{d}_R^* \tilde{d}_R + \tilde{M}_L^2(\tilde{e}_L^* \tilde{e}_L + \tilde{\nu}_L^* \tilde{\nu}_L) + \tilde{M}_e^2 \tilde{e}_R^* \tilde{e}_R \]
\[+ \frac{1}{2} \left[M_3 \tilde{g} \tilde{g} + M_2 \tilde{\omega}_i \tilde{\omega}_i + M_1 \tilde{b} \tilde{b} \right] + \frac{g}{\sqrt{2} M_W} \epsilon_{ij} \left[\frac{M_d}{\cos \beta} A_d H_1^i \tilde{Q}^j \tilde{d}_R^* \right] \]
\[+ \frac{M_u}{\sin \beta} A_u H_2^j \tilde{Q}^i \tilde{u}_R^* + \frac{M_e}{\cos \beta} A_e H_1^i \tilde{\nu}_j \tilde{e}_R^* + \text{h.c.} \] .

Specificity of SUSY: Writing the most general Lagrangian, generalizing the spins of fields, SUCH that quadratic divergences are always shut down.
MSSM: Squark & Slepton sector

Physical states are 2 scalar mass-eigenstates: Mixtures of left- & right chiral superpartners (scalars) of SM quark and leptons

Let's pick-up example of the top sector: If \([f_L - f_R]\) chiral basis:

\[
M_t^2 = \left(\begin{array}{c} \tilde{M}_Q^2 + M_T^2 + M_Z^2 \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) \cos 2\beta \left(M_T (A_T + \mu \cot \beta) \right) \\
M_T (A_T + \mu \cot \beta) \end{array} \right)
\]

- \(\tilde{M}_Q\): Left squark mass
- \(\tilde{M}_U\): Right squark mass
- \(A_T\): Trilinear coupling specific to the top sector
- \(M_Q = M_T\): Mass of the SM particle
- \(\mu\): Higgs (bilinear) mixing parameter
- \(\beta\): Higgs vev-specific parameter (see in a couple of slides): Plays a role in the mixing
MSSM: Chargino sector

Physical states are 2 fermionic mass-eigenstates: Mixtures of charged winos and charged higgsinos, which are SUSY eigenstates

In the charged [wino – higgsino] basis:

\[
M_{\tilde{\chi}^\pm} = \begin{pmatrix}
M_2 & \sqrt{2}M_W \sin \beta \\
\sqrt{2}M_W \cos \beta & -\mu
\end{pmatrix}
\]

- \(M_2\): Mass of the wino
- \(\mu\): Higgs (bilinear) mixing parameter

Comments:
- The more \(M_2 \gg 1\): The more the charginos are wino-like
- The more \(\mu \gg 1\): The more the charginos are higgsino-like
- \(\beta\): Not playing a role in mixing
MSSM: Neutralino sector

Physical states are 4 fermionic mass-eigenstates: Mixtures of neutral winos w^0, bino b, and 2 neutral higgsinos, which are SUSY eigenstates

In the neutral $[b - w^0 - h^0_1 - h^0_2]$ basis:

$$M_{\tilde{\chi}^0_i} = \begin{pmatrix}
M_1 & 0 & 0 & 0 \\
0 & M_2 & -M_Z \cos \beta \sin \theta_W & M_Z \sin \beta \sin \theta_W \\
-M_Z \cos \beta \sin \theta_W & M_Z \cos \beta \sin \theta_W & 0 & -M_Z \sin \beta \cos \theta_W \\
M_Z \sin \beta \sin \theta_W & -M_Z \sin \beta \cos \theta_W & M_Z \sin \beta \cos \theta_W & 0
\end{pmatrix}$$

- M_1: Mass of the bino
- M_2: Mass of the wino
- μ: Higgs (bilinear) mixing parameter

Exercise: Qualitatively gauge the influence of each parameters in the mass-matrix above on the “type” of neutralinos
Higgs sector:

“Richer” than others...
MSSM: Higgs sector

2 Higgs complex doublets:

\[
V_H = \left(| \mu |^2 + m_1^2 \right) |H_1|^2 + \left(| \mu |^2 + m_2^2 \right) |H_2|^2 - \mu B \epsilon_{ij} \left(H_1^i H_2^j + \text{h.c.} \right) + \frac{g^2 + g'^2}{8} \left(|H_1|^2 - |H_2|^2 \right)^2 + \frac{1}{2} g^2 |H_1^* H_2|^2 .
\]

8 degrees of freedom – 3 (massive gauge bosons) = 5 physical Higgs fields: \(h / H / H^\pm / A \) (CP-odd)

2 VEVs:

\[
\langle H_1^0 \rangle \equiv v_1 \\
\langle H_2^0 \rangle \equiv v_2
\]

→ \(\tan \beta \equiv \frac{v_2}{v_1} \)

\[
\tan 2\alpha = \frac{(M_A^2 + M_Z^2) \sin 2\beta}{(M_A^2 - M_Z^2) \cos 2\beta + \epsilon_h / \sin^2 \beta}
\]

3 parameters to describe the MSSM Higgs sector:

Once \(v_{1,2} \) are fixed such that:

\[
M_{WW}^2 = \frac{g^2}{2} (v_1^2 + v_2^2)
\]

This whole sector is described by (only) 2 other parameters:

→ \(\tan \beta \)

→ \(M_A^2 \)

\[
M_A^2 = \frac{2 | \mu B |}{\sin 2\beta}
\]
Equation governing lightest Higgs mass:

\[
M_{h,H}^2 = \frac{1}{2} \left\{ M_A^2 + M_Z^2 + \frac{\epsilon_h}{\sin^2 \beta} \pm \left[\left(M_A^2 - M_Z^2 \right) \cos 2\beta + \frac{\epsilon_h}{\sin^2 \beta} \right]^2 + \left(M_A^2 + M_Z^2 \right)^2 \sin^2 2\beta \right\}^{1/2}
\]

with: \(\epsilon_h = \frac{3G_F}{\sqrt{2}\pi^2} M_T^4 \log \left(\frac{\tilde{m}_s^2}{M_T^2} \right) \)

Contribution of 1-loop correction only!

Squark masses: Higgs mass particularly sensitive to \(\sim t_{1,2} \) system

Upper bound:

\[
M_h^2 < M_Z^2 \cos^2 2\beta + \epsilon_h
\]

Here: No mixing.

\(M(h) \) can go higher if stop-sector mixing larger

→ The "well-known" \(M_h < 135 \text{ GeV/c}^2 \) limit for any-SUSY lightest Higgs

→ ...is dependent on

→ 2-loop calculations

→ Renormalization calculations which can evolve...
Equation governing lightest Higgs mass:

\[
M_{h,H}^2 = \frac{1}{2} \left\{ M_A^2 + M_Z^2 + \frac{\epsilon_h}{\sin^2 \beta} \pm \left[\left(M_A^2 - M_Z^2 \right) \cos 2\beta + \frac{\epsilon_h}{\sin^2 \beta} \right]^2 + \left(M_A^2 + M_Z^2 \right)^2 \sin^2 2\beta \right\}^{1/2}
\]

with: \(\epsilon_h = \frac{3G_F}{\sqrt{2}\pi^2} M_T^4 \log \left(\frac{\tilde{m}^2}{M_T^2} \right) \)

Contribution of 1-loop correction only!

Squark masses: Higgs mass particularly sensitive to \(\sim t_{1,2} \) system

Upper bound: When \(M_A \to \infty \)

\[
M_h^2 = M_A^2 - f(M_A^4)
\]

\[
M_H^2 = M_A^2 + f(M_A^4)
\]

Just to know:

→ With richer Higgs structure: Can also have \(M_h^{\text{max}} > 130 \text{ GeV/c}^2 \)

→ \(\mu \)B perturbative up to Planck-scale:

For any SUSY: \(M_h^{\text{max}} \sim 150 \text{ GeV/c}^2 \)
Let's look at couplings:

\[Z^\mu Z^\nu h : \frac{igM_Z}{\cos \theta_W} \sin(\beta - \alpha) g^{\mu\nu} \]

\[Z^\mu Z^\nu H : \frac{igM_Z}{\cos \theta_W} \cos(\beta - \alpha) g^{\mu\nu} \]

\[W^\mu W^\nu h : igM_W \sin(\beta - \alpha) g^{\mu\nu} \]

Similar for coupling to \(\gamma \) & fermions

SM couplings

Exercise: Demonstrate the 2 relations above

It is possible that:

1/ Light \(h \) “SM like”:
 → Mass: Rather low
 → \(\text{Br}(h \rightarrow \gamma\gamma) \sim \text{Like in SM} \)

2/ \{H, H^\pm, A\} much heavier & degenerate
 → Couplings of lightest Higgs to fermions/\(\gamma/W/Z \sim \text{Like in SM} \)
 → Couplings of “additional” Higgs to fermions/\(\gamma/W/Z \sim 0 \)

This is called the decoupled regime:
1/ The lightest Higgs field is a) rather light b) behaves \textit{a la} SM
2/ The “new” physical Higgs fields are (much ?) higher in mass
MSSM: Higgs couplings to fermions

Let's plug in L_{yukawa} the full MSSM Higgs fields & the SM fermions:

$$L_{\text{yukawa}} = -G_d (\bar{u}, \bar{d})_L (\phi^+, \phi^0) d_R - G_u (\bar{u}, \bar{d})_L (\phi^0, \phi^-) u_R + \text{hc}$$

Then break EW with $\phi = (1/\sqrt{2})(0, v_{1,2} + \text{Higgs}) \leftarrow \text{“Rapid” notation}

Then re-rewrite things in terms of coupling:

$$\mathcal{L} = -\frac{g m_i}{2 M_W} \left[C_{ffh} \bar{f}_i f_i h + C_{ffH} \bar{f}_i f_i H + C_{ffA} \bar{f}_i \gamma_5 f_i A \right]$$

- **Coupling to same fermions:**
 “Opposite” behaviors of 2 lightest neutral higgs h and H

- **Coupling to the same Higgs:**
 “Opposite” behaviors of u/d quarks

- **Let's see what the 2nd case graphically means...**

$$\tan 2\alpha = \frac{(M_A^2 + M_Z^2) \sin 2\beta}{(M_A^2 - M_Z^2) \cos 2\beta + \epsilon_h / \sin^2 \beta}$$
MSSM: Higgs couplings to fermions

Let's find the different effects
MSSM: Higgs couplings to fermions

- Opposite behaviours versus M_A: See couplings: $C_{ddh} \propto 1/\cos \beta \propto \tan \beta$
- Different behaviours versus $\tan \beta$: See couplings
- Down/Up quark couplings: Always bigger/smaller than 1
 - MSSM Higgs hunters are interested in final states with b, τ!
 - Only interesting @ high $\tan \beta$ AND low M_A
- High M_A: All h-fermion coupling $\rightarrow 1$!

- **In decoupled regime**: No enhancement effect for down quarks. Things are pretty “democratic” across quark generations
 - Guess what's the present experimental picture...
Do present Higgs search limits "exclude MSSM"?

Not really:

- \(M_A \) has no (dynamic) reason to be < 500, 700 GeV/c\(^2\)
 - High \(M_A \) region still quite open
- Be careful: Do not interpret this plot as a “probability density plot for something to exist”: IF SUSY exists, it will be in 1 given spot
 - Could be here
- **Now one thing is sure:** IF SUSY exists, \(M_A \) pretty high: Decoupled regime seems preferred

The 1\(^{st}\) M in MSSM means Minimal: We are dealing with 124 parameters here... “Not constrained at all” framework
Motivation for the \tilde{t}_1 : Special relations with the Higgs

Stop/Higgs yukawa coupling

\[M(h) = f \left[M(\tilde{q}, \tilde{t}_{1,2}) \right] \]

\[M_{h,H}^2 = \frac{1}{2} \left\{ M_A^2 + M_Z^2 + \frac{\epsilon_h}{\sin^2 \beta} \pm \left[\left(M_A^2 - M_Z^2 \right) \cos 2\beta + \frac{\epsilon_h}{\sin^2 \beta} \right]^2 + \left(M_A^2 + M_Z^2 \right)^2 \sin^2 2\beta \right\}^{1/2} \]

with: \[\epsilon_h = \frac{3G_F}{\sqrt{2\pi^2}} M_T^4 \log \left(\frac{\tilde{m}^2}{M_T^2} \right) \]

Squark masses: Higgs mass particularly sensitive to $\sim t_{1,2}$ system

LHC: Higgs & stop searches can constraint each other

Stop masses

Higgs masses

Demina et al., PRD 62, 35011
Experimental feedbacks, Hints (?)...
Why did we not get any hint of SUSY in EW Data?

→ When looking at sector other than Higgs: Such SUSY contributions are suppressed \(\alpha [M_W/M_{SUSY}]^2 \) where \(M_{SUSY} \) is the scale SUSY particles.

What about performing a global fit to the EW data and try to fix SUSY spectrum?

→ No stringent limit on physical masses
 → Not really astonishing: Try to fit with 124 degrees of freedom...
 → There “seems” to be information about \(\tan\beta \): Two “preferred” values:
 → \(\tan\beta \sim 2 \): Well, this is more & more suppressed by Higgs searches
 → \(\tan\beta \sim 30 \): ...
 → What to think about this? Probably better to look more directly for SUSY particles.
Looking “a bit more” directly: $\text{Br}(b \to s X)$

Famous “on the edge of SM” measurement:

Out of SM... ?
→ Either statistical fluctuation
→ Or new physics around corner

Let's plug-in SUSY: Let's draw a SUSY diagram allowing such a process
Looking “a bit more” directly: \(\text{Br}(b \rightarrow s X) \)

Famous “on the edge of SM” measurement:

\[
\text{BR}(B \rightarrow X_s \gamma) = (2.32 \pm 0.67) \times 10^{-4}
\]

Out of SM... ?

→ Either statistical fluctuation
→ Or new physics around corner

Let's plug-in SUSY: \(b \rightarrow \text{Loop} \{\chi_1, t_1\} \rightarrow s \)

\[
\frac{\text{BR}(b \rightarrow s \gamma)}{\text{BR}(b \rightarrow c e \bar{\nu})} \sim \frac{|V_{ts} V_{tb}|^2}{|V_{cb}|^2} \frac{6 \alpha}{\pi} \left\{ C + \frac{M_t^2 A_T \mu}{\tilde{m}_T^4} \right\} \tan^2 \beta
\]

SM prediction: Slightly above measurement → Indication of \(A_T \mu < 0 \)

Depending on \(\tan \beta \): This probes \(t_1 \) masses in \([100,300]\) GeV/c\(^2\) region

Let's look at the of \(A_T \mu < 0 \) issue...
Looking “a bit more” directly: Indications?

Stop masses

Higgs masses

\[A_{\tau \mu} < 0: \text{Compatible with:} \]

1/ \(M(h) > 115, 120 \text{ GeV/c}^2 \)
2/ \(M(t_1) < 500 \text{ GeV/c}^2 \)

Other thoughts?
Exercises
SUSY diagrams

Let's start from the bottom of the SUSY scale...

\[
\chi^0_2 \rightarrow l \bar{l} \chi^0_1 \\
\chi^\pm_1 \rightarrow l^\pm \nu \chi^0_1 \\
\]

@LHC: Give a production process for lightest chargino production
Then give the full diagram

\[
t_1 \rightarrow b \chi^\pm_1 \\
t_1 \rightarrow t \chi^0_1 \\
t_1 \rightarrow c \chi^0_1 \\
\]
SUSY diagrams

Let's start from the bottom of the SUSY scale...

\[\chi^0_2 \rightarrow l l \chi^0_1 \]
\[\chi^\pm_1 \rightarrow l^\pm \nu \chi^0_1 \]

@LHC: Give a production process for lightest chargino production
Then give the full diagram

\[t_1 \rightarrow b \chi^\pm_1 \]
\[t_1 \rightarrow t \chi^0_1 \]
\[t_1 \rightarrow c \chi^0_1 \]
\[t_1 \rightarrow b W \chi^0_1 \]

@LHC: Give an example of simplest production mode for \(t_1 \)
Now push it to the semi-leptonic final state via \(b \chi^\pm_1 \) scenario
SUSY diagrams

Welcome to exercise & verify with MadGraph
Stop decays: Different diagrams for different domains

- \(\tilde{t}_1 \to b \ W^+ \tilde{\chi}_1^0 \)
- \(\tilde{t}_1 \to b \ \tilde{\chi}_1^+ \)
- \(\tilde{t}_1 \to t \tilde{\chi}_1^0 \)

Conditions:

\[
\begin{align*}
 b + W + \tilde{\chi}_1^0 &< \tilde{t}_1 \\
 \tilde{t}_1 &< t + \tilde{\chi}_1^0 : \quad W + \tilde{\chi}_1^0 < \tilde{\chi}_1^+ < \tilde{t}_1 - b \\
 \text{Close } \tilde{t}_1 &\to t + \tilde{\chi}_1^0 \\
 \text{Not exclusive: Will co-exist :} &
\end{align*}
\]
Stop decays: Different diagrams for different domains

\[\tilde{t}_1 \rightarrow b \ W^+ \ \tilde{\chi}_1^0 \]

\[\tilde{t}_1 \rightarrow b \ \tilde{\chi}_1^+ \]

\[\tilde{t}_1 \rightarrow t \ \tilde{\chi}_1^0 \]

Conditions:

\[b + W + \tilde{\chi}_1^0 < \tilde{t}_1 \]

\[\tilde{t}_1 < t + \tilde{\chi}_1^0 : \]

Close \(\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 \)

“Dominance” conditions:

\[\tilde{t}_1 < \tilde{\chi}_1^+ + b : \]

Make \(\tilde{\chi}_1^+ \) virtual

\[W + \tilde{\chi}_1^0 < \tilde{\chi}_1^+ < \tilde{t}_1 - b \]

\[t + \tilde{\chi}_1^0 < \tilde{t}_1 \]

← Not exclusive: Will co-exist →

\[t + \tilde{\chi}_1^0 < \tilde{\chi}_1^+ + b : \]

Privilege vs \(b \ \tilde{\chi}_1^+ \)
@LHC: Give an example of simplest production mode for:
- squarks
- gluino
- squark+gluino production

Simplest diagram for t_1 production via gluino pair-production
SUSY diagrams
t_1 production via - give each time the mass condition(s):

→ Simplest squark production
→ Simplest sbottom production
→ Squark production with intermediate slepton
→ t_2 production