

Paul Scherrer Institut

Combined function superconducting magnets for light and compact proton therapy gantries

(Ciro Calzolaio, Stéphane Sanfilippo, Alexander Gabard, PSI) Wednesday, 23.08.2017

Outline

- Context and motivations
- Proton therapy at PSI;
- Why using superconducting magnets?
- Magnet specification and design.
- Synoptic about the Superconducting magnets for gantry applications;
- Conclusions and outlook.

Why proton therapy?

A long tradition in proton therapy at PSI...

Motivations:

- High B-field smaller bending radius reduced machine footprint;
- High B-field gradient reduced dispersion high acceptance fast energy scanning (without changing magnetic field);
- Reduce the magnet(s) weight, especially for carbon ion facilities;
- PSI proposal: Achromatic design with combined function magnet [1];

Challenges:

- Reliability (magnet quench);
- Cryogenic system (cooling complexity, T_{op} ~ 4.5 K);
- High operating B-field large Lorentz forces;
 large stray field.

[1] A. Gerbershagen et al., "A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets", Z Med Phys. 2016 Sep;26(3):224-37. doi: 10.1016/j.zemedi.2016.03.006. Epub 2016 Apr 12.

Magnetic concept

Magnetic concept: Fe to reduce the current at the conductor

Magnetic concept: Fe to reduce the current at the conductor

Synoptic about the main challenges related to superconducting magnets for gantry application

Choice of Sc. material: Nb₃Sn:

- Brittle and strain sensitive;
- React and wind process;
- Conductor cost:
- Allows coping with T>4.2 K (6-7 K);

- Gantry rotation: ~360° → no helium bath; 😕
- Cryocoolers: limited heat capacity at low T (≤ 1.5 W @ 4.2 K); 💢
- They "only" require an electric plug to work. 😃

Mechanical structure:

- Gantry rotation → support the magnet in all directions;
- Support the Lorentz forces;
- Avoid conductor movement in operation.

Synoptic about the main challenges related to superconducting magnets for gantry application

Whole bending section with iron voke 316 L Cryostat Support structure Thermal shield Cu Thermal shield around 000 the 316 LN Warm bore former Fe 1st and 2nd yoke stage connections to cryocooler 316LN casing Warm bore

Conclusions and outlook

- Numerical calculations show the feasibility of the presented concept.
- Next steps:
 - The technical design face is ongoing and has to be completed by middle 2018;
 - The manufacturing of a first prototype will start next year;
 - Tests at operating conditions are foreseen by middle 2020.

- Progress in the <u>superconducting</u> technology
- Progress in the <u>cryocoolers</u> technology

Progress in proton therapy:

- Faster treatments;
- More compact machines;
- Easier installation in hospital environments.

Thanks for the attention

APPENDIX

DQS: field quality

Thermal Analysis

Surface: Temperature (K)

5.3 5.25

5.2

5.15

5.1

5.05

4.95

4.9

5

Magnetization Fe

Eddy currents

Conduction

Quench scenario

cold

Mechanical switch:

- It opens in less than 50 ms;
- It sustains voltages up to 2kV;
- It sustains currents up to 5 kA.

Dump resistor:

2.25 Ω (L=0.37 H $\rightarrow \tau = L/R_{ex} = 0.16 s$)

warm

DQS, thermal study -- AC losses and eddy currents

- The iron yoke is laminated → reduced eddy currents;
- Apart from the AC losses in the winding pack, the eddy currents in the coil support ring contribute largely to warm up the coil temperature.

DQS: Nb-Ti with iron yoke

10 Nb-Ti strands, 0.73 mm diameter 5.64 T, 1550A

12 Nb-Ti strands, 0.73 mm diameter 5.64 T, 1788A

Quench margin: 23%

T margin: 1.5 K

Quench margin: 27%

T margin: 1.6 K

Scaling law from:

L. Zani et al., "Jc(B,T) characterization of NbTi strands used in ITER PF-relevant Insert and Full-scale sample"

PAUL SCHERRER INSTITUT

DQS, thermal study → AC losses and eddy currents

Thermal Analysis: heating during operation

Time=433.7 s Surface: Temperature (K)

