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✔ Why using superconducting magnets?

✔ Magnet specification and design.

✔ Synoptic about the Superconducting magnets for gantry applications;
 

✔ Conclusions and outlook.
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Why proton therapy?



A long tradition in proton therapy at PSI...



Why a superconducting gantry?

● High B-field              smaller bending radius             reduced machine 
footprint;

● High B-field gradient            reduced dispersion           high acceptance
fast energy scanning (without changing magnetic field);

● Reduce the magnet(s) weight, especially for carbon ion facilities;

● PSI proposal: Achromatic design with combined function magnet [1];   

Motivations:

Challenges:
● Reliability (magnet quench);

● Cryogenic system (cooling complexity, T
op

 ~ 4.5 K);

● High operating B-field            large Lorentz forces;
                                              large stray field. 

[1] A. Gerbershagen et al., “A novel beam optics concept in a particle therapy gantry utilizing the 
advantages of superconducting magnets”, Z Med Phys. 2016 Sep;26(3):224-37. doi: 
10.1016/j.zemedi.2016.03.006. Epub 2016 Apr 12.



Magnetic concept
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Magnetic concept: Fe to reduce the current at the conductor

Normal conducting 
focusing quadrupoles.

Superconducting focusing 
quadrupole + sextupole
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Superconducting dipoles with integrated 
quadrupole and sextupole components (DQS)
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Without iron the field at the conductor 
location has to be ~1.5 T higher.



Magnetic concept: Fe to reduce the current at the conductor
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Synoptic about the main challenges related to 
superconducting magnets for gantry application 

Choice of Sc. material: Nb
3
Sn:

● Brittle and strain sensitive;  
● React and wind process;
● Conductor cost;
● Allows coping with T>4.2 K (6-7 K);

Cooling system: 
cryocoolers:

● Gantry rotation: ~360° →no  
helium bath;

● Cryocoolers: limited heat 
capacity at low T (≤ 1.5 W @ 
4.2 K);

● They “only” require an electric 
plug to work.

Mechanical structure:
● Gantry rotation→  support the 

magnet in all directions;
● Support the Lorentz forces;
● Avoid conductor movement in 

operation.



Synoptic about the main challenges related to 
superconducting magnets for gantry application 

Choice of Sc. material: Nb
3
Sn:

Cooling system: 
cryocoolers:

Mechanical structure:



Whole bending section with iron yoke
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Conclusions and outlook
● Numerical calculations show the feasibility of the presented concept.

● Next steps:
● The technical design face is ongoing and has to be completed by middle 

2018;
● The manufacturing of a first prototype will start next year;
● Tests at operating conditions are foreseen by middle 2020.

● Progress in the superconducting 
technology

● Progress in the cryocoolers 
technology    

Thanks 
for the attention

Progress in proton 
therapy:
● Faster treatments;
● More compact machines;
● Easier installation in 

hospital environments. 
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DQS:  field quality 



Stray field issues



Thermal Analysis

Joule heating

AC losses coils

Magnetization Fe

Eddy currents

Heat capacity

Conduction

Cryocoolers



Quench scenario

Mechanical switch: 

• It opens in less than 50 ms;

• It sustains voltages up to 2kV;

• It sustains currents up to 5 kA.

Extraction switch 1

Extraction switch 2

C
ur

re
nt

 s
up

pl
y

Rex1

Rex2

In case of connection in 
series, a cold diode per 
magnet may be also 
foreseen.

Dump resistor:
2.25 Ω (L=0.37 H t=L/Rex=0.16 s )

0D approximation



DQS, thermal study  AC losses and eddy currents→
● The iron yoke is laminated → reduced eddy currents;
● Apart from the AC losses in the winding pack, the eddy currents in the coil 

support ring contribute largely to warm up the coil temperature.



10 Nb-Ti strands, 0.73 mm diameter
5.64 T,  1550A

12 Nb-Ti strands, 0.73 mm diameter
5.64 T,  1788A 

Quench margin: 23%
T margin: 1.5 K

Quench margin: 27%
T margin: 1.6 K

Scaling law from:
L. Zani et al., “Jc(B,T) characterization of NbTi strands used in ITER PF-relevant 
Insert and Full-scale sample”

DQS: Nb-Ti with iron yoke



DQS, thermal study  AC losses and eddy currents→
● Nb-Ti (PF3) ● Nb

3
Sn (Bruker-EAS)



Thermal Analysis: cool-down



Thermal Analysis: heating during operation

Bruker Nb
3
Sn:

D
f,effective

=8.2

I
c
 (4K, 12 T, 0%) = 204 A 

 



Support structure 2 : von Mises stress [MPa] upon rotation
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