Development of Fast Timing Silicon Pixel Sensors for Positron Emission Tomography

Daiki Hayakawa (Daiki.Hayakawa@unige.ch, University of Geneva) on behalf of TT-PET collaboration

Introduction

- **PET** is a nuclear medicine method used to observe the metabolic processes in the body, by detecting pairs of back to back gamma-rays produced by the annihilation of positrons emitted by a beta plus tracer
- **Thin TOF-PET project** is developing a PET based on silicon sensors with very high time resolution (30 ps) for small animal and meant to be inserted in existing MRI (PET-MRI).

16 cells and 60 layers
Inner radius: 2.02 cm

Fulfill 4 important keys of PET-MRI
1. Time of Flight (TOF)
2. Depth of Interaction (DOI)
3. Thin
4. Not affected by the magnetic field

First measurement of timing resolution

Beam test with minimum ionizing particle (MIP)

M. Benoit et al., 100 ps time resolution with thin silicon pixel detectors and a SiGe HBT amplifier, JINST 2016

Corresponds to 24 ps with 511 keV photons

ASIC Development

Sensor layout of Monolithic Prototype (September 2016)

- Low noise and fast amplifier based on SiGe HBT transistors
- Low power consumption

Apply 20, 40, 60, 80, 100 V to First GR

Succeeded to control the breakdown voltage by applying voltage to first guard ring

Sensor layout of Monolithic Prototype (April 2017)

- Pixel Matrix with guard ring
- Special guard ring test structures
- Full read-out chain, amplifier, discriminator and TDC