

A. Streun :: on behalf of the SLS-2 project team :: Paul Scherrer Institut

SLS-2 – Ugrade of the Swiss Light Source

25.08.2017 Swiss Physical Society Meeting, Geneva

Outline

- Basics: brightness & emittance
- The Swiss Light Source SLS
- How to minimize storage ring emittance
- Conceptual design of SLS-2

Experiments with synchrotron light

- *energy range* UV (10 eV) ... X-ray (100 keV)
- brightness

$$B = \frac{\text{photons}}{(\text{time}) \times (\text{area}) \times (\text{solid angle}) \times (\text{energy interval})}$$
$$= 6\text{-dimensional } invariant \text{ photon phase space density}$$

coherence

$$CF = \frac{\text{phase space (diffraction only)}}{\text{phase space (diffraction + source)}}$$

⇒ requirement for source: *small!*

+ stable, reliable, available, reproducible etc....

Brightness, coherent fraction and emittance

$$\frac{B(\lambda)}{CF(\lambda)} = \frac{1}{(\varepsilon_x \otimes \varepsilon_r(\lambda)) \times (\varepsilon_y \otimes \varepsilon_r(\lambda))} \times \begin{cases} \dot{N}(\lambda) / BW \\ (\varepsilon_r(\lambda))^2 \end{cases}$$

 $N(\lambda)$ spectral photon flux (dipole or undulator)

BW bandwidth of experiment = wavelength interval (usually 0.1%)

 $(\varepsilon_{x/y} \otimes \varepsilon_r) = \text{photon beam } emittance, \text{ horizontal and vertical}$

$\varepsilon_{x/y}$ electron beam emittance

$$\varepsilon_r = \lambda/4\pi$$
 diffraction emittance

- \Rightarrow 10 keV photons $\rightarrow \varepsilon_r = 10$ pm[rad]
- "diffraction limited" $\varepsilon_{x/y} << \varepsilon_r$
- \rightarrow Coherent Fraction \rightarrow 100%
- → Highest possible brightness

Emittance [m·rad]

= 2-D phase space area

SLS history

	1990	First ideas for a Swiss Light Source
	1993	Conceptual Design Report
June	1997	Approval by Swiss Government
June	1999	Finalization of Building
Dec.	2000	First Stored Beam
June	2001	Design current 400 mA reached Top up operation started
July	2001	First experiments ———
Jan. May	2005 2006 2010	Laser beam slicing "FEMTO" 3 Tesla super bends ~completion: 18 beamlines

SLS beam lines

SLS achievements

- Rich scientific output
 - > 500 publications in refereed journals/year
- Reliability
 - 5000 hrs user beam time per year
 - 97.6% availability (2005-2016 average)
- Top-up operation since 2001
 - constant beam current 400-402 mA over many days
- Photon beam stability $< 1 \mu m$ rms (at frontends)
 - fast orbit feedback system (< 100 Hz)
 - undulator feed forward tables, beam based alignment, dynamic girder realignment, photon BPM integration etc...
- Ultra-low vertical emittance: $0.9 \pm 0.4 \text{ pm}$
 - model based and model independent optics correction
 - high resolution beam size monitor developments
- **◆ 150 fs** FWHM hard X-ray source FEMTO
 - laser-modulator-radiator insertion and beam line

SLS and the new light source generation

16 years of successful operation...

... but emittance **5 nm** at 2.4 GeV not competitive in near future

Flagship applications (CXDI, Ptychography, RIXS etc.) need higher brightness

Emittance scaling $\mathcal{E} \propto \gamma^2 C^{-3}$ \rightarrow linear fit $\log \frac{\mathcal{E}}{\gamma^2} = K - 3 \cdot \log C$

$$K \approx 1.5 \rightarrow \approx 0$$
 improvement $\times 30$

Storage Ring Emittance

Horizontal emittance in electron storage ring

- determined by radiation equilibrium
- independent of initial conditions

The maximize this -- and -- minimize this The maximize the maximized the maximize

Minimum equilibrium emittance

- Maximum radiation damping
 - increase radiated power ⇒ pay with RF-power
 - \Rightarrow Damping wigglers: Σ |deflection angles| > 360°
- Minimum quantum excitation
 - keep off-momentum orbit close to nominal orbit

Dispersion =
$$\frac{\text{orbit}}{\text{momentum}} = \frac{X}{\Delta p/p}$$

- minimize dispersion at locations of radiation (= bending magnets)
 - Horizontal focusing into bending magnet to suppress dispersion.
 - many short bending magnets (= small deflection angle ϕ) to limit dispersion growth: $\varepsilon \sim \phi^3$
 - ⇒ Multi-Bend Achromat (MBA) ⇒ Miniaturization of components

Upgrade plan: SLS-2

SLS upgrade task: $\varepsilon_x = 5 \text{ nm} \rightarrow \varepsilon_x < 150 \text{ pm}$

SLS upgrade challenge: small circumference

- Scaling $\varepsilon_x \propto (\text{Energy})^2 / (\text{Circumference})^3$
- Scaling other designs to SLS ⇒ not competitive ×
 - Scaling MAX-IV, ESRF-EBS, SIRIUS etc. $\rightarrow \varepsilon_x > 500 \text{ pm}$
- No space for very many lattice cells (MBA)
- No space for damping wigglers
- ⇒ New lattice concept for SLS-2

$$\varepsilon_x \rightarrow 125 \text{ pm}$$

SLS-2 lattice cell

Standard MBA cell

- quadrupoles (lenses) to focus dispersion
- dispersion at center > 0
 (beam dynamics constraints)

SLS-2 modified MBA cell

- displaced quadrupoles= reverse bending magnets
- dispersion at centre → 0
- longitudinal field variation in dipole magnet: max.B at center
- Σ |angles|> 360° integrated "damping wiggler"

⇒ 5× lower emittance than conventional cell

Upgrade summary SLS → SLS-2

- Lattice type: $12 \times TBA \rightarrow 12 \times 7 BA$
 - longitudinal gradient bend / reverse bend cell
- Emittance: $5.5 \text{ nm} \rightarrow 125 \text{ pm} \text{ (incl. IBS)}$
- Circumference: $288 \text{ m} \rightarrow 290.4 \text{ m}$
- Periodicity: $3 \rightarrow 12$
- Straight sections:

$$3\times11$$
 m, 3×7 m, 6×4 m $\rightarrow 12\times5\frac{1}{2}$ m

- 3 Superbends: $2.9 \text{ T} \rightarrow 6.0 \text{ T}$
- maintained:
 - 2.4 GeV beam energy, 400 mA current
 - off-axis top-up injection

Beamsize at SLS-2 and SLS

SLS-2 emittances 150 / 10 pm, energy spread 1.05e-3 beta-x, beta-y, dispersion: mid straight 2.8 / 2.3 / 0 m, superbend: 0.31 / 8.5 / 3e-4 m

SLS emittances 5620 / 5 pm, energy spread 0.86e-3 beta-x, beta-y, dispersion: mid S-straight 1.4 / 1.0 / 0 m, superbend: 0.45 / 14.3 / 0.029

SLS-2 budget & schedule

Budget

- 2017-20 pre-study budget 2 MCHF
- 2021-24 project budget 100 MCHF
 - 17 MCHF from PSI budget
- 2025-29 budget 25 MCHF

Time schedule

- Sep 1, 2017: completion of conceptual design report
- Sep. 26/27, 2017: CDR review meeting
- < Dec. 31, 2017: submission of proposal
- 2018-19 technical design
- 2020-22 construction & preassembly
- 2023-24 exchange of storage ring