

A local real-space view of the periodic lattice distortion in 1*T*-TiSe₂ *A scanning tunneling microscopy and DFT study*

<u>B. Hildebrand</u>, T. Jaouen, M-L. Mottas, G. Monney, and P. Aebi

University of Fribourg

DFT calculations :

D. R. Bowler

Growth of Single Crystals : C. Barreteau, E. Giannini London Centre for Nanotechnology

University of Geneva

17-TiSe₂ : an intriguing compound

1*T*-TiSe₂ : an intriguing compound

Cu doped 17-TiSe₂ E. Morosan, Nat. Phys. **2**, 544 (2006)

Under pressure A. F. Kusmartseva, PRL, **103**, 236401 (2009)

1*T*-TiSe₂ : an intriguing compound

Charge Density Wave T_{CDW} ~ 200 K, new 2x2x2 structure F. Di Salvo, PRB, **14**, 4321 (1976)

Superconductivity

Cu doped 17-TiSe₂ E. Morosan, Nat. Phys. **2**, 544 (2006)

Under pressure A. F. Kusmartseva, PRL, **103**, 236401 (2009)

1*T*-TiSe₂ : an intriguing compound

Charge Density Wave T_{CDW} ~ 200 K, new 2x2x2 structure

F. Di Salvo, PRB, 14, 4321 (1976)

Superconductivity

Cu doped 17-TiSe₂ E. Morosan, Nat. Phys. **2**, 544 (2006)

Under pressure A. F. Kusmartseva, PRL, **103**, 236401 (2009)

Anomalous resistivity

17-TiSe₂ : an intriguing compound

Charge Density Wave T_{CDW} ~ 200 K, new 2x2x2 structure

F. Di Salvo, PRB, 14, 4321 (1976)

Superconductivity

Cu doped 17-TiSe₂ E. Morosan, Nat. Phys. **2**, 544 (2006)

Under pressure A. F. Kusmartseva, PRL, **103**, 236401 (2009)

Anomalous resistivity

What is the signature of the CDW/PLD with STM ?

The 17-TiSe₂ CDW viewed by STM

The 1*T*-TiSe₂ CDW viewed by STM

Domains and chirality observed with STM

Domain formation upon doping (Cu or Ti)

A. M. Novello, PRL, 118, 017002 (2017)

S. Yan, PRL, **118**, 106405 (2017) B. Hildebrand, PRB, **93**, 125140 (2016)

Domains and chirality observed with STM

Domain formation upon doping (Cu or Ti)

A. M. Novello, PRL, 118, 017002 (2017)

S. Yan, PRL, **118**, 106405 (2017) B. Hildebrand, PRB, **93**, 125140 (2016)

Chiral CDW

J. Ishioka, PRL 105, 176401 (2010)

M. lavarone, PRB 85, 155103 (2012)

The importance of the PLD

The importance of the PLD

The 3D character of the 17-TiSe₂ CDW

The 3D character of the 17-TiSe₂ CDW

The 3D character of the 1T-TiSe₂ CDW

The 3D character of the 1T-TiSe₂ CDW

The 3D character of the 17-TiSe₂ CDW

The simple observation of the CDW charge modulation does not allow to discriminate between the two possible PLDs at the surface...

Initial question :

What happens when the density of Ti self-doping is increased above 2.5%?

 \rightarrow New samples were grown at 700°C with 5% additional Ti in the tube.

Initial question :

What happens when the density of Ti self-doping is increased above 2.5%?

 \rightarrow New samples were grown at 700°C with 5% additional Ti in the tube.

Initial question :

What happens when the density of Ti self-doping is increased above 2.5%?

 \rightarrow New samples were grown at 700°C with 5% additional Ti in the tube.

 V_{bias} =0.15 V, I_s=0.2 nA, 40 × 17 nm²

The new defect does not look like intercalated Ti.

The new defect does not look like intercalated Ti.

But it is placed, such as intercalated Ti, in vertical alignment with a structural Ti.

The new defect does not look like intercalated Ti.

But it is placed, such as intercalated Ti, in vertical alignment with a structural Ti.

It exhibits a well recognizable **asymmetry** with respect to the CDW, the "bright edge".

DFT simulation, V_{bias} =0.2 V

DFT simulation, V_{bias} =0.2 V

DFT simulation, V_{bias} =0.2 V

Right-handed !

It is therefore possible to probe the symmetry of the PLD using this new defect

This observation confirms that the CDW is 2 x 2 x 2 on this sample !

Outlook

Probe the underlying PLD in the presence of doping-induced domains (Cu and Ti) .

Outlook

Probe the underlying PLD in the presence of doping-induced domains (Cu and Ti).

Consider the third dimension in the topic of chirality.