THEORETICAL PHYSICS

Swift state-of-the-art calculations of the 2D Electron Liquid in the Hyper-Netted-Chain Theory

Clemens Staudinger
August 23, 2017
Institute for Theoretical Physics – JKU Linz, Austria
INTRODUCTION AND MOTIVATION
System

- many particle system ⇒ no analytic solution
System

- many particle system \Rightarrow no analytic solution
- consisting of electrons \Rightarrow Pauli principle
System

- many particle system \Rightarrow no analytic solution
- consisting of electrons \Rightarrow Pauli principle
- in 2D \Rightarrow less investigated than 3D systems
System

- many particle system \Rightarrow no analytic solution
- consisting of electrons \Rightarrow Pauli principle
- in 2D \Rightarrow less investigated than 3D systems

- isotropic and homogeneous
- interacting via Coulomb potential \(v_C(r) = \frac{e^2}{r} \) (cgs)
System

- many particle system \Rightarrow no analytic solution
- consisting of electrons \Rightarrow Pauli principle
- in 2D \Rightarrow less investigated than 3D systems

- isotropic and homogeneous
- interacting via Coulomb potential $v_C(r) = e^2/r$ (cgs)
Importance of 2D Electron Systems

- electronics and semiconductor heterostructures
Importance of 2D Electron Systems

- electronics and semiconductor heterostructures
- applications in spintronics
Characterisation

Wigner-Seitz Radius r_s

$r_s \cdot a_B$ is the radius of a circle occupied by one electron

- $n \propto 1/r_s^2$
Characterisation

Wigner-Seitz Radius r_s

$r_s \cdot a_B$ is the radius of a circle occupied by one electron

$n \propto 1/r_s^2$

Spin-Polarisation ζ

excess of electrons with majority spin; $\zeta = |n_{\uparrow} - n_{\downarrow}| / n$

- $\zeta = 0 \rightarrow$ paramagnetic
- $\zeta = 1 \rightarrow$ ferromagnetic
Characterisation

Wigner-Seitz Radius r_s

$r_s \cdot a_B$ is the radius of a circle occupied by one electron

$n \propto 1/r_s^2$

Spin-Polarisation ζ

excess of electrons with majority spin; $\zeta = |n_\uparrow - n_\downarrow| / n$

- $\zeta = 0 \rightarrow$ paramagnetic
- $\zeta = 1 \rightarrow$ ferromagnetic

Ground state properties of interest:
kinetic energy, potential energy, total energy, pressure, compressibility etc.
Important Functions

Pair Distribution Function $g(r)$

normalised probability density of finding two particles a distance r apart

Structure Factor $S(k)$

measurable in elastic scattering experiments $\frac{d\sigma}{d\Omega} \propto S(k)$

2D Electron Liquid

<table>
<thead>
<tr>
<th>$g(r)$:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(k)$:</td>
<td></td>
</tr>
</tbody>
</table>

Fourier-Transform

$$S(k) = 1 + \text{FT}_{2D}[g - 1](k)$$
Spin-Resolved Treatment

- treat subsystems of spins independently
Spin-Resolved Treatment

- treat subsystems of spins independently

$$g(r) = c_1 g^{↑↑}(r) + c_2 g^{↓↓}(r) + c_3 g^{↑↓}(r)$$

- $c_i \ldots$ constants
Spin-Resolved Treatment

- treat subsystems of spins independently

\[g(r) = c_1 g^{\uparrow\uparrow}(r) + c_2 g^{\downarrow\downarrow}(r) + c_3 g^{\uparrow\downarrow}(r) \]

- \(c_i \ldots \) constants
Spin-Resolved Treatment

- treat subsystems of spins independently
 \[g(r) = c_1 g^{\uparrow\uparrow}(r) + c_2 g^{\downarrow\downarrow}(r) + c_3 g^{\uparrow\downarrow}(r) \]

- \(c_i \ldots \) constants

- results in matrix form (intuitive)
 \[
 g(r) = \begin{pmatrix}
 g^{\uparrow\uparrow}(r) & g^{\uparrow\downarrow}(r) \\
 g^{\downarrow\uparrow}(r) & g^{\downarrow\downarrow}(r)
 \end{pmatrix}
 \]
Spin-Resolved Treatment

- treat subsystems of spins independently
 \[g(r) = c_1 g^{\uparrow\uparrow}(r) + c_2 g^{\downarrow\downarrow}(r) + c_3 g^{\uparrow\downarrow}(r) \]
- \(c_i \ldots \) constants
- results in matrix form (intuitive)
 \[g(r) = \begin{pmatrix} g^{\uparrow\uparrow}(r) & g^{\uparrow\downarrow}(r) \\ g^{\downarrow\uparrow}(r) & g^{\downarrow\downarrow}(r) \end{pmatrix} \]
- advantage: further properties accessible
 \[g_M(r) = c_1 g^{\uparrow\uparrow}(r) + c_2 g^{\downarrow\downarrow}(r) - c_3 g^{\uparrow\downarrow}(r) \]
Spin-Resolved Treatment

- treat subsystems of spins independently

\[g(r) = c_1 \ g^{\uparrow\uparrow}(r) + c_2 \ g^{\uparrow\downarrow}(r) + c_3 \ g^{\uparrow\downarrow}(r) \]

- \(c_i \ldots \) constants

- results in matrix form (intuitive)

\[g(r) = \begin{pmatrix} g^{\uparrow\uparrow}(r) & g^{\uparrow\downarrow}(r) \\ g^{\uparrow\downarrow}(r) & g^{\downarrow\downarrow}(r) \end{pmatrix} \]

- advantage: further properties accessible

\[g_M(r) = c_1 \ g^{\uparrow\uparrow}(r) + c_2 \ g^{\uparrow\downarrow}(r) - c_3 \ g^{\uparrow\downarrow}(r) \]
Spin-Resolved Treatment

■ treat subsystems of spins independently

⇒ \(g(r) = c_1 \ g^{↑↑}(r) + c_2 \ g^{↓↓}(r) + c_3 \ g^{↑↓}(r) \)

■ \(c_i \ldots \) constants

■ results in matrix form (intuitive)

\[
g(r) = \begin{pmatrix} g^{↑↑}(r) & g^{↑↓}(r) \\ g^{↓↑}(r) & g^{↓↓}(r) \end{pmatrix}
\]

■ advantage: further properties accessible

⇒ \(g_M(r) = c_1 \ g^{↑↑}(r) + c_2 \ g^{↓↓}(r) - c_3 \ g^{↑↓}(r) \)

■ similar for \(S(k) \) and \(S_M(k) \)
How can $g(r)$ and $S(k)$ be calculated?

1. Quantum Monte-Carlo Simulations (QMC)
 - give accurate results
 - take a lot of time
 - several hours to calculate $g(r)$ and $S(k)$ for one system at a single r_s
 - need powerful computers
How can \(g(r) \) and \(S(k) \) be calculated?

1. Quantum Monte-Carlo Simulations (QMC)
 - give accurate results
 - take a lot of time
 - several hours to calculate \(g(r) \) and \(S(k) \) for one system at a single \(r_s \)
 - need powerful computers

2. Hyper-Netted-Chain Theory (HNC)
 - pair theory which takes correlations into account
 - developed in the 60ies for classical liquids
 - moderate computational effort
 - 59 min for 100 \(r_s \)-values (\(r_s = 0.1 \ldots 10 \), \(\Delta r_s = 0.1 \)) on an average laptop
 - results in agreement with QMC (!)
Energy Comparison with the Literature

HYPER-NETTED-CHAIN THEORY
Ansatz

- Ansatz with **Bose (!)** symmetry

Jastrow Ansatz

\[\psi = \prod_{\sigma, \sigma'} \prod'_{i<j} f(\mathbf{r}_{\sigma, i}, \mathbf{r}_{\sigma', j}) := \exp \frac{1}{4} \left\{ \sum_{\sigma, \sigma'} \sum'_{i, j} u_{2, \sigma', \sigma}(\mathbf{r}_{\sigma, i}, \mathbf{r}_{\sigma', j}) \right\} \]

- includes two-body correlations \(u_{2, \sigma', \sigma} \)
Ansatz

- Ansatz with Bose (!) symmetry

Jastrow Ansatz

\[
\psi = \prod_{\sigma, \sigma'} \prod'_{i<j} f(r_{\sigma, i}, r_{\sigma', j}) := \exp \left\{ \frac{1}{4} \sum_{\sigma, \sigma'} \sum'_{i, j} u_{2, \sigma, \sigma'}(r_{\sigma, i}, r_{\sigma', j}) \right\}
\]

- includes two-body correlations \(u_{2, \sigma, \sigma'} \)
- \(g^{\sigma, \sigma'} \propto \frac{\delta}{\delta u_{2, \sigma, \sigma'}} \ln \langle \psi | \psi \rangle \)
- Mayer Cluster expansion
- minimise energy

\(\Rightarrow \) HNC-EL equations (Euler-Lagrange)
Bosonic HNC

\[V^\sigma,\sigma'(r) = \left[\psi_0^\sigma,\sigma' \right] g^\sigma,\sigma' + \frac{\hbar^2}{m} \left| \nabla \sqrt{g^\sigma,\sigma'} \right|^2 + \left(g^\sigma,\sigma' - 1 \right) w_b^\sigma,\sigma' \]
Fermionic HNC (Kallio (1996), Davoudi)

\[V^{\sigma,\sigma'}(r) = \left[v^{\sigma,\sigma'}_C + V_e^{\sigma,\sigma'} \right] g^{\sigma,\sigma'} + \frac{\hbar^2}{m} \left| \nabla \sqrt{g^{\sigma,\sigma'}} \right|^2 + \left(g^{\sigma,\sigma'} - 1 \right) w^{\sigma,\sigma'}_b \]
RESULTS
$g(r)$ & effective interaction (paramagnetic)
\(g(r) \) & effective interaction (paramagnetic)
$g(r)$ & effective interaction (paramagnetic)
$g(r)$ & effective interaction (paramagnetic)
Shift of the Peak in $S_M(k)$ (dilute system)
Energy Comparison with the Literature1

\begin{figure}
\centering
\begin{minipage}{0.45\textwidth}
\centering
\begin{tikzpicture}
\begin{semilogyaxis}[
 width=\textwidth,
 height=0.8\textwidth,
 xlabel={r_s},
 ylabel={$\epsilon(r_s) \text{[Rydberg]}$},
 xmin=0, xmax=10,
 ymin=-0.8, ymax=0.8,
 xtick={0,2,4,6,8,10},
 ytick={-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8},
 legend pos=south west,
]
\addlegendentry{HF}
\addlegendentry{HNC}
\addlegendentry{QMC}
\addplot[blue,mark=triangle] table [x=r_s, y=HF] {data.csv};
\addplot[red] table [x=r_s, y=HNC] {data.csv};
\addplot[black] table [x=r_s, y=QMC] {data.csv};
\end{semilogxaxis}
\end{tikzpicture}
\caption{Paramagnetic Energy Comparison}
\end{minipage}
\begin{minipage}{0.45\textwidth}
\centering
\begin{tikzpicture}
\begin{semilogyaxis}[
 width=\textwidth,
 height=0.8\textwidth,
 xlabel={r_s},
 ylabel={$\epsilon(r_s) \text{[Rydberg]}$},
 xmin=0, xmax=10,
 ymin=-0.8, ymax=0.8,
 xtick={0,2,4,6,8,10},
 ytick={-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8},
 legend pos=south west,
]
\addlegendentry{HNC}
\addlegendentry{QMC}
\addplot[blue,mark=triangle] table [x=r_s, y=HNC] {data.csv};
\addplot[black] table [x=r_s, y=QMC] {data.csv};
\end{semilogxaxis}
\end{tikzpicture}
\caption{Ferromagnetic Energy Comparison}
\end{minipage}
\end{figure}

Energy Comparison with the Literature1

\begin{figure}
\centering
\includegraphics[width=\textwidth]{energy_comparison.png}
\caption{Comparison of correlation energy $\epsilon(r_s)$ in Rydberg for paramagnetic and ferromagnetic states.}
\end{figure}

\begin{itemize}
\item Paramagnetic state:
- HNC:
- QMC:
\item Ferromagnetic state:
- HNC:
- QMC:
\end{itemize}

Energy Comparison with the Literature

\[\varepsilon(r_s) \text{[Rydberg]} \]

\(r_s \)

HNC
QMC

\[\varepsilon(r_s) \text{[Rydberg]} \]

\(r_s \)

HNC
QMC

Phase Transition

\[(\varepsilon - \varepsilon_M) \cdot r_s^{3/2} \text{ [Rydberg]}\]

\[r_s\]

PM

FM

\[24.8 \quad 25.2 \quad 25.6 \quad 26.0\]
Different QMC groups obtain vastly different results!!
Outlook

- algorithm also applicable to other Fermi systems
- systems with more than two components
- spin-resolved extension to 2D systems with finite thickness
- input for dynamic theories
Thank you!

- Helga Böhm
- Raphael Hobbiger
- Dominik Kreil
- Jürgen Drachta
- Michaela Haslhofer
- Robert Zillich
- Arthur Ernst
- all members of the ITP
Influence of Finite Thickness ($\zeta = 0, r_s = 10$)
Influence of Finite Thickness ($\zeta = 0, r_s = 10$)
Influence of Finite Thickness ($\zeta = 0$, $r_s = 10$)

\begin{align*}
g(r) &= r \cdot k_F
\end{align*}

144.9 nm
Influence of Finite Thickness ($\zeta = 0$, $r_s = 10$)

![Graph showing influence of finite thickness with $g(r)$ vs. $r \cdot k_F$]

- Correlations diminish → peak decreases
- Value of $g(0)$ increases
- GaAs/AlGaAs quantum well
Influence of Finite Thickness ($\zeta = 0$, $r_s = 10$)

- Correlations diminish \rightarrow peak decreases
- Value of $g(0)$ increases
- GaAs/AlGaAs quantum well

$g(r)$ vs. $r \cdot k_F$

362.3 nm
Analogies to Statistical Physics

Statistical Physics

- Canonical Ensemble:
 \[Z_N = c_N \int d\Gamma \exp(-\beta H) \]

- \[U = -\frac{\partial}{\partial \beta} \ln Z_N \]

- excellent summaries available at our institute (Bac Hebenstreit, Kobler, Kurunczi-Papp)

- Mayer Cluster Expansion and Diagrammatics

HNC

- Normalisation:
 \[I = \int dX \exp \left(\sum u_{\sigma,\sigma'}^{\sigma,\sigma'} \right) \]

- \[g_{\sigma,\sigma'} = \frac{2}{n_{\sigma} n_{\sigma'}} \frac{\delta}{\delta u_{\sigma,\sigma'}^{\sigma,\sigma'}} \ln I \]
HNC-Equations

\[g(r) = \exp \left[u_2(r) + N(r) + E(r) \right] \]

\[S(k) = 1 + FT \left[g(r) - 1 \right] (k) \]

\[\tilde{N}(k) = S(k) \left(1 - \frac{1}{S(k)} \right)^2 \]

- What are \(u_2(r) \), \(E(r) \) and \(N(r) \)?

\[E(r) := 0 \rightarrow \text{HNC/0} \]

Euler-Equation

\[\frac{\delta \langle \hat{H} \rangle}{\delta u_2(r)} = 0 \]
Euler-Equation

\[
\left(\frac{\hbar^2}{m} \right) \Delta \sqrt{g^{\sigma,\sigma'}} = \left(v_C + w_b^{\sigma,\sigma'} \right) \sqrt{g^{\sigma,\sigma'}} \\
\equiv V_{\text{eff}}^{\sigma,\sigma'}
\]

\[
\left(\frac{\hbar^2}{m} \right) \Delta \sqrt{g^{\sigma,\sigma'}} = \left[v_p^{\sigma,\sigma'} + \left(v_C + w_b^{\sigma,\sigma'} + w_e^{\sigma,\sigma'} \right) \right] \sqrt{g^{\sigma,\sigma'}} \\
\equiv V_{\text{eff}}^{\sigma,\sigma'}
\]

\[
\tilde{w}_e^{\sigma,\sigma'}(k) = - \lim_{r_s \to 0} \tilde{w}_b^{\sigma,\sigma'}(k) = \frac{\hbar^2 k^2}{2m} \left(1 + 2 S_F^{\sigma,\sigma'}(k) \right) \left(\frac{S_F^{\sigma,\sigma'}(k) - 1}{S_F^{\sigma,\sigma'}(k)} \right)^2
\]

\[
v_p^{\sigma,\sigma'}(r) = \frac{\hbar^2}{m} \frac{\Delta \sqrt{g_F^{\sigma,\sigma'}(r)}}{\sqrt{g_F^{\sigma,\sigma'}(r)}}
\]
HNC-EL Equations for Bosons

■ (bosonic) induced potential

\[\tilde{w}_b(k) = -\frac{1}{2} \left(S \cdot T + T \cdot S - 3T + S^{-1} \cdot T \cdot S^{-1} \right) \]

■ particle-hole potential

\[V^{\sigma,\sigma'}(r) = v_C^{\sigma,\sigma'} g^{\sigma,\sigma'} + \frac{\hbar^2}{m} \left| \nabla \sqrt{g^{\sigma,\sigma'}} \right|^2 + \left(g^{\sigma,\sigma'} - 1 \right) w_b^{\sigma,\sigma'} \]

■ structure factor

\[S(k) = \sqrt{T} \cdot \left(2 \sqrt{T} \cdot \tilde{V} \cdot \sqrt{T} + T^2 \right)^{-\frac{1}{2}} \cdot \sqrt{T} \]
Turning Bosons into Fermions

- include fermionic properties
- solution: alter interaction appropriately!

$$V_{\sigma,\sigma'}(r) = \left[v_{C,\sigma'}^{\sigma,\sigma'} + v_{p,\sigma'}^{\sigma,\sigma'} + w_{e,\sigma'}^{\sigma,\sigma'} \right] g^{\sigma,\sigma'} + \frac{\hbar^2}{m} \left| \nabla \sqrt{g^{\sigma,\sigma'}} \right|^2 + \left(g^{\sigma,\sigma'} - 1 \right) w_{b,\sigma'}^{\sigma,\sigma'}$$

- $v_{p,\sigma'}^{\sigma,\sigma'}(r)$ and $w_{e,\sigma'}^{\sigma,\sigma'}(r)$ contain the quantities of the free system ($S_{F,\sigma'}^{\sigma}(k)$ and $g_{F,\sigma'}^{\sigma}(r)$) in a way that in the limit of $r_s \to 0$ the solution of the equations is $S_{F,\sigma'}^{\sigma}(k)$ and $g_{F,\sigma'}^{\sigma}(r)$
- feasible solution from a physical point of view
- Solve the equations!
Pair Distribution Function (Full Form)

\[g(r) = \left(\frac{1 + \zeta}{2} \right)^2 g_{↑↑}(r) + \left(\frac{1 - \zeta}{2} \right)^2 g_{↓↓}(r) + \frac{1 - \zeta^2}{2} g_{↑↓}(r) \]

\[g_M(r) = \left(\frac{1 + \zeta}{2} \right)^2 g_{↑↑}(r) + \left(\frac{1 - \zeta}{2} \right)^2 g_{↓↓}(r) - \frac{1 - \zeta^2}{2} g_{↑↓}(r) \]
Analytical FT

1/r vs. r

4π/k² vs. k

a.u.
Numerical FT

![Graph showing numerical and analytical FT comparison]

- **Graph Description:**
 - The graph compares numerical and analytical Fourier transforms (FTs).
 - The x-axis represents the variable r, ranging from 0 to 15.
 - The y-axis represents $1/r$, ranging from 0 to 8.
 - The inset graph shows $4\pi/k^2$ on the y-axis and k on the x-axis, ranging from 0 to 15.
 - The numerical results are indicated by red crosses, while the analytical results are shown as a black line.

![Inset Graph showing $4\pi/k^2$ vs k]

- **Inset Graph Details:**
 - The inset graph illustrates the behavior of $4\pi/k^2$ as k varies.
 - The graph is scaled to show the relationship between $4\pi/k^2$ and k over the specified range.
Calculating Thermodynamic Observables

\[\varepsilon(r_s, \zeta) = \varepsilon_0(r_s, \zeta) + \frac{1}{r_s^2} \int_0^{r_s} dr'_s \ r'_s u(r'_s) \]

\[\left\langle \frac{V}{N} \right\rangle \equiv u(r_s) = \frac{1}{2N} \sum_{k \neq 0} \tilde{v}_C(k; r_s) [S(k; r_s) - 1] \]

\[p = - \left. \frac{\partial E}{\partial V} \right|_{T,N} = n^2 \left. \frac{\partial \varepsilon}{\partial n} \right|_{T,N}, \quad \varepsilon = \frac{E}{N} \]

\[\frac{1}{\kappa} = -V \left. \frac{\partial p}{\partial V} \right|_{T,N} = -\frac{r_s}{4} \left. \frac{\partial \varepsilon}{\partial r_s} \right| + \frac{r_s^2}{4} \left. \frac{\partial^2 \varepsilon}{\partial r_s^2} \right| \]
Contributions to the Energy

\[\varepsilon(r_s, \zeta) = \varepsilon_0(r_s, \zeta) + \varepsilon_x(r_s, \zeta) + \varepsilon_c(r_s, \zeta) \]

\[\varepsilon_0(r_s, \zeta) = \varepsilon_0(r_s) \left(\frac{1 + \zeta}{D} \right) \frac{D+2}{2} + \frac{(1 - \zeta) D+2}{D} , \quad \varepsilon_0(r_s) = D \varepsilon_F/(D+2) \]

\[\varepsilon_x(r_s, \zeta) = \varepsilon_x(r_s) \left(\frac{1 + \zeta}{D} \right) \frac{D+1}{2} + \frac{(1 - \zeta) D+1}{D} \]

\[\varepsilon_x(r_s) = -\frac{4}{3} \frac{e^2 k_F}{\pi} = -\frac{8\sqrt{2}}{3\pi r_s} \varepsilon_R \quad \text{in 2D} \]

\[\varepsilon_x(r_s) = -\frac{3}{4} \frac{e^2 k_F}{\pi} = -\frac{3}{2\pi \alpha r_s} \varepsilon_R \quad \text{in 3D} \]
Comparison with QMC

(a) $\zeta=0.48$

$S(k)$

b $g(r)$

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0 1 2 3 4

$\frac{k}{k_F}$

HNC QMC

b $r_s=20$

$g(r)$

b $r_s=20$

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0 1 2 3 4 5 6

$\frac{r}{k_F}$

1 $C. P. Gori-Giorgi, S. Moroni and G. B. Bachelet.

2D Electron System in a Semiconductor

1 J. T. Drachta Plasmon Properties in dilute, two dimensional Electron Liquids
Real Units

<table>
<thead>
<tr>
<th></th>
<th>$\tilde{\gamma}$</th>
<th>γ</th>
<th>GaAs/AlGaAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>n [cm$^{-2}$]</td>
<td>$\frac{1.14 \times 10^{16}}{\gamma^2} \left(\frac{\tilde{m}_b}{\varepsilon_b} \right)^2$</td>
<td>$\frac{3.02 \times 10^{11}}{\gamma^2}$</td>
<td>3.02×10^{11}</td>
</tr>
<tr>
<td>k_F [105 cm$^{-1}$]</td>
<td>$\frac{2673 \tilde{m}_b}{\gamma \varepsilon_b}$</td>
<td>13.78γ</td>
<td>13.78</td>
</tr>
<tr>
<td>E_F [meV]</td>
<td>$\frac{27230 \tilde{m}_b}{\gamma^2 \varepsilon_b^2}$</td>
<td>$\frac{10.80}{\gamma^2}$</td>
<td>10.80</td>
</tr>
</tbody>
</table>

1J. T. Drachta Plasmon Properties in dilute, two dimensional Electron Liquids
Phase Diagram1

Superconductivity \(^1\)

SFHNC vs. QMC1

$\zeta=0$
$r_s=32$

$S(k)$

k/k_F

QMC
$SFHNC$

1R. A. Hobbiger, Ground state and excitations of two-dimensional electron liquids, PHD Thesis