

Towards understanding hybrid strong/weak thermalisation of the QGP

In collaboration with A. Mukhopadhyay, F. Preis, A. Rebhan

A talk by Alexander I. Soloviev

Joint Annual Meeting of SPS and ÖPG August 24th, 2017

Outline

- Motivation
- Semiholography in heavy ion collisions
- Kinetic theory/hydrodynamics
- Some results

Motivation

Challenge: To develop a consistent framework which combines weak and strong degrees of freedom

To understand the evolution of Quark-Gluon Plasma (QGP), need weak and strong degrees of freedom interacting at various energy scales

How does this interplay affect thermalization?

Heavy Ion Collisions

Competing descriptions:

- pQCD good for hard momentum scales
- Gauge/gravity duality good for fluid description

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Picture from: NAYAK T. Heavy ions: Results from the Large Hadron Collider. Pramana. 2012;79(4):719-735. doi:10.1007/s12043-012-0373-7.

Semiholographic models

Original proposal by Iancu and Mukhopadhyay¹ Refined by Mukhopadhyay, Rebhan, Preis, Stricker²

Dynamical boundary theory coupled to a strongly coupled conformal sector with a gravity dual

UV theory: captured by classical YM theory for overoccupied gluon modes at Q_s

IR theory: described by N=4 Super Yang-Mills theory for effective theory of strongly coupled soft gluon modes

¹JHEP06(2015)003

²JHEP05(2016)141

Semiholography at late times

- At late times, gluons are not in an overoccupied state
 - → Classical YM description of glasma fails
 - → Use kinetic theory instead
- Soft radiation seems to undergo hydrodynamization

The model

Nearly free streaming limit:

- Hard partons (UV)
 described by kinetic
 theory
- Soft radiation (IR)
 described via
 hydrodynamics
 (approximation due to
 fluid/gravity
 correspondence)

Coupling

The two theories know about each other through the metric deformation

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{\gamma}{Q_s^4} t_{\mu\nu} \sqrt{-g}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{\gamma}{Q_s^4} t_{\mu\nu} \sqrt{-g}$$

Both sectors have a respective conservation law

$$\nabla_{\mu} t^{\mu}_{\ \nu} = 0 \qquad \qquad \nabla_{\mu} t^{\mu}_{\ \nu} = 0$$

Equations

Kinetic sector (UV)

$$t^{\mu}_{\nu} = \int \frac{\mathrm{d}^{3} p}{\sqrt{-g} p^{0}} p^{\mu} p_{\nu} f(x^{\mu}, p_{j})$$
$$\left[p^{\mu} \partial_{\mu} + \Gamma^{\mu}_{\nu\rho} p^{\nu} p_{\mu} \right] f(x^{\mu}, p_{j}) = C(f, f)$$

Hydrodynamic sector (IR)

$$\mathbf{t}^{\mu}_{\ \nu} = (\epsilon + \mathfrak{P})\mathbf{u}^{\mu}\mathbf{u}_{\nu} + \mathfrak{P}\delta^{\mu}_{\nu} - \eta\sigma^{\mu}_{\ \nu}$$
$$\nabla_{\mu}\mathbf{t}^{\mu}_{\ \nu} = 0$$

Total energy-momentum tensor

Can construct a stress tensor of full system:

$$T^{\mu}_{\ \nu} = t^{\mu}_{\ \nu} \sqrt{-g} + t^{\mu}_{\ \nu} \sqrt{-g} - \frac{\gamma}{Q_s^4} t^{\alpha}_{\ \beta} \sqrt{-g} t^{\beta}_{\ \alpha} \sqrt{-g} \delta^{\mu}_{\nu}$$

This is conserved in the flat background!

$$\partial_{\mu}T^{\mu}_{\ \nu}=0$$

Linear response

The linear response of both the UV and IR theories is known.

Linear response for the complete theory?

We find that the shear viscosity is additive

$$\eta = \frac{\eta}{1}(1 + \gamma \frac{\varepsilon}{2}) + \frac{\eta}{1}(1 + \gamma \frac{\varepsilon}{2})$$

Bi-hydro

- Look at the effective change of the hydrodynamic degrees of freedom in both sectors
- Study eigenmodes of the complete system
- Find the total system has a hydro mode, which is just the sum of the eigenmodes of the two sectors

Shear viscosity

Outlook

- Understanding the thermodynamics of the complete system
- Moving away from conformal limit (e.g. adding bulk viscosity)
- Moving from linearization to numerics
- Dependence on initial conditions?