Measurement of $\pi^0\pi^{\pm}$ Photoproduction off the Deuteron with the A2 Experiment

Sebastian Lutterer— University of Basel — Krusche Group

SPS Meeting Geneva — Hadron Physics — August 24, 2017

Outline

Motivation

Theory

Experimental Setup

Analysis

Results

Summary

Outlook

Motivation

Photoproduction of pion pairs off nuclei

- $\, \hookrightarrow \, \, {\rm Insight \ into \ low \ energy \ QCD}$
- $\,\hookrightarrow\,$ In medium resonances of nucleons
- $\,\hookrightarrow\,$ Particularly: intermediate state ρ forbidden for neutral state $\pi^0\pi^0$

Results from photoabsorption experiments:

333-336 photoabsorption at INFN)

Theory

$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$	$\gamma n(p) \longrightarrow \pi^- \pi^0 p(p)$
\hookrightarrow 4 channels:	\hookrightarrow 4 channels:
– direct	– direct
– via $\Delta^+ \longrightarrow \pi^+ n$	– via $\Delta^0 \longrightarrow \pi^- p$
- via $\Delta^0 \longrightarrow \pi^0 n$	– via $\Delta^+ \longrightarrow \pi^0 p$
– via $ ho^+ \longrightarrow \pi^+ \pi^0$	$-$ via $\rho^- \longrightarrow \pi^- \pi^0$

The ρ channel is forbidden for the uncharged $\pi^0 \pi^0$ final state (isospin conservation).

Experimental Setup

A2 Crystal Ball Experiment at MAMI

Analysis

Cuts for event selection:

- PID versus CB energy ("dE-E cut")
- Invariant mass of the π^0 reconstructed from $\gamma\gamma$
- Missing mass
- Coplanarity of the final state
- Kinematic reconstruction check

Charged particle identification:

 π^+ channel MC – cut on "punch through" energy range

Sebastian Lutterer | University of Basel — Krusche Group

 π^- channel MC

Sebastian Lutterer | University of Basel — Krusche Group

 π^- channel MC

Sebastian Lutterer | University of Basel — Krusche Group

$$\sqrt{(p_{\text{Beam}}^4 + p_{\text{Target}}^4 - p_{\pi^+}^4 - p_{\pi^0}^4)^2} - m_{n(\text{part.})} \stackrel{!}{=} 0$$

 π^+ channel data

Spectator omitted \Rightarrow broadened peak through Fermi smearing

Fermi smearing > missing mass of system!

$$(p_{\text{Beam}}^4 + p_{\text{Target}}^4 - p_{\pi^0}^4 - p_{p(part.)}^4)^2 - m_{\pi^-}^2 \stackrel{!}{=} 0$$

 π^- channel data

 \Rightarrow Cut on squared missing mass instead

Results

Preliminary cross sections

 $(\pi^{-}$ channel DAPHNE data: A. Zabrodin *et al.*, PRC 55 R1617 (1997))

Sebastian Lutterer | University of Basel — Krusche Group

(Proton data: S. Abt, preliminary result)

Summary

- Preliminary cross sections for both mixed charge double pion production channels
- Low energy region comparable to $\pi^+\pi^0$ off free protons
- Detection efficiency problem for higher energy $\Delta^{0/+}\pi^\pm$ intermediate channel still needs further investigation

Outlook

- Consider influence of possible background channels
- Analyze and compare available data of other deuterium beamtimes
- Study the differences to the production off the free proton in detail
- Analyze production off heavier nuclei with liquid helium data

Questions?

Invariant mass fit

Example for $cos(\theta) \in [0.4, 0.6)$ and $E_{\gamma} \in [1060, 1120)$:

Analyzed data set

- Target: Liquid Deuterium density: 0.14741 b⁻¹, length: 3.02 cm
- Trigger: M2+ (two or more particles in CB)
- CB energy sum: 300 MeV
- Electron beam energy: 1557.5 MeV
- Photon tagger range: 400 MeV to 1400 MeV

Detected particles

- $\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$
 - \hookrightarrow detected particles:
 - 1 charged:
 - π^+
 - 3 uncharged:
 - $\pi^0 \longrightarrow \gamma \gamma$ (98.823 %)
 - neutron participant

- $\gamma n(p) \longrightarrow \pi^- \pi^0 p(p)$
 - \hookrightarrow detected particles:
 - 2 charged:
 - $-\pi^-$
 - proton participant
 - 2 uncharged:
 - $\pi^0 \longrightarrow \gamma \gamma$ (98.823 %)
- Further selection of events necessary through cuts and corrections

All cuts

 π^+ m.m. cuts (upper row without, lower with all cuts applied)

 π^- m.m. cuts (upper row without, lower with all cuts applied)

 π^+ cop. cuts (upper row without, lower with all cuts applied)

 π^- cop. cuts (upper row without, lower with all cuts applied)