

CP violation in b-baryons at LHCb

Rafael Silva Coutinho

University of Zurich

August 23rd, 2017

Joint Annual meeting SPS/OPG, Geneva

This talk covers some recent results in *b*-baryon decays at LHCb

Introduction, techniques and experimental constraints

[e.g. production and detection asymmetries]

 Searches for *CP* violation in *b*-baryon multibody decays

[e.g. $\Lambda^{0}_{b} \rightarrow p\{K,\pi\}, \Lambda^{0}_{b} \rightarrow \{\Lambda,K^{0}\}hh$]

• Searches for *CP* violation in $\Lambda^{0}_{b} \rightarrow p3h$, including first evidence in $\Lambda^{0}_{b} \rightarrow p\pi\pi^{+}\pi^{-}$

[Local phase-space asymmetry]

CP violation in the baryonic sector

Phenomenon well stablished in the meson sector, *i.e.* Kaon and $B^{\pm,0}(s)$ decays: no deviation from the SM has been seen

As-of-yet no CP violation in *b*-baryons has been observed, though the CKM mechanism predicts sizeable amount of violation

At LHCb *b*-baryons are collected in unprecedented quantities \rightarrow opens a new field in flavour physics for precision measurements

Same underlying short distance physics for b-baryons and B mesons but with different spin and QCD structure

B

Experimental issues

CP violation **in decay**: only type available in the baryonic sector (no mixing due to baryon number conservation)

This observable can be measured by comparing yields between baryon/anti-baryon: δ

$$A_{CP} = \frac{N(A \to f) - N(\overline{A} \to \overline{f})}{N(A \to f) + N(\overline{A} \to \overline{f})} \propto \sin\left(\delta_1 - \delta_2\right) \sin\left(\varphi_1 - \varphi_2\right)$$

strong phase weak phase $A_1 e^{i\delta_1} e^{i\varphi_1} A_2 e^{i\delta_2} e^{i\varphi_2}$ $A_2 e^{i\delta_2} e^{i\varphi_2}$ CP violating

- Contributions from at least two amplitudes: e.g. $A_1 e^{i\delta_1} e^{i\phi_1}, A_2 e^{i\delta_2} e^{i\phi_2}$
- Need non-vanishing strong and weak phase difference
- Sensitive to baryon-antibaryon production asymmetries
- Sensitive to charged particle reconstruction asymmetries

Triple product asymmetry: use momenta Λ_b^0 and Λ_b^0 3 final particles in 4-body decays

$$\begin{split} C_{\widehat{T}} &= \vec{p}_p \cdot (\vec{p}_{h_1^-} \times \vec{p}_{h_2^+}) & \propto \sin \Phi \text{, for } \Lambda_b^0 \Lambda_b^0 \\ \overline{C}_{\widehat{T}} &= \vec{p}_{\overline{p}} \cdot (\vec{p}_{h_1^+} \times \vec{p}_{h_2^-}) & \propto \sin \Phi \text{, for } \overline{\Lambda}_b^0 \Lambda_b^0 \end{split}$$

$$h_1 = \pi, h_2 = K \text{ for } \Lambda_b^0 \to p\pi^- K^+ K^-$$
$$h_1 = \pi_{\text{fast}}, h_2 = \pi_{\text{slow}} \text{ for } \Lambda_b^0 \to p\pi^- \pi^+ \pi^-$$

$$\pi^+ \Lambda^0_b$$
 Φ p
 Λ^0_b p
 π^-_{slow} π^-_{fast}

P-odd asymmetries: $A_{\hat{T}}(C_{\hat{T}}) = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)} \quad \text{, for } \Lambda_b^0 \qquad \text{Observable}$

$$\overline{A}_{\hat{T}}(\overline{C}_{\hat{T}}) = \frac{\overline{N}(-\overline{C}_{\hat{T}} > 0) - \overline{N}(-\overline{C}_{\hat{T}} < 0)}{\overline{N}(-\overline{C}_{\hat{T}} > 0) + \overline{N}(-\overline{C}_{\hat{T}} < 0)} \text{, for } \overline{\Lambda}_{b}^{0}$$

$$a_{CD}^{\widehat{T}\text{-}\mathrm{odd}} = \frac{1}{-} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right)$$

 Λ_b^0 P-violating observable

observable

$$a_{CP}^{T\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - A_{\widehat{T}} \right)$$

$$a_P^{\hat{T}\text{-odd}} = \frac{1}{2}(A_{\hat{T}} + \bar{A}_{\hat{T}})$$

The $A_{\hat{T}}, \bar{A}_{\hat{T}\hat{T}\hat{T}} a_P^{\hat{T}-\text{odd}}$ and $a_{CP}^{\hat{T}-\text{odd}}$ observables are largely unaffected by A_D and A_P

Searches for CP violation in b-baryon decays

LHCb results : $\mathcal{L} = 3 \, \text{fb}^{-1} - 2011 + 2012$ dataset

Searches for CP in multi-body decays

[LHCb, JHEP 04 (2014) **087**, JHEP 05 (2016) **08**]

Beauty baryon: two-body case

Simplest decay modes: $\Lambda^{0}_{b} \rightarrow pK^{-}, p\pi^{-}$

[CDF, PRL 113, 242001 (2014)]

[LHCb, PRL 118, 081801 (2017)]

Ongoing analysis - expected approximately 10x CDF statistics

Potentially large CPV effects in charmless decays

[Phys. Rev. D 91, 116007 (2015)]

	our result	pQCD [5]	data
$10^2 \mathcal{A}_{CP}(\Lambda_b \to pK^-)$	$5.8\pm0.2\pm0.1$	-5^{+26}_{-5}	$-10 \pm 8 \pm 4$ [8]
$10^2 \mathcal{A}_{CP}(\Lambda_b \to p\pi^-)$	$-3.9 \pm 0.2 \pm 0.0$	-31^{+43}_{-1}	$6 \pm 7 \pm 3$ [8]
$10^2 \mathcal{A}_{CP}(\Lambda_b \to pK^{*-})$	$19.6\pm1.3\pm1.0$		_
$10^2 \mathcal{A}_{CP}(\Lambda_b \to p \rho^-)$	$-3.7 \pm 0.3 \pm 0.0$		

[LHCb, JHEP 04 (2014) 087]

Studies of *b*-baryon decays is still at an early stage, although LHCb interesting has been significantly increasing

First observation (8.6 σ) of the $\Lambda^{0}_{b} \rightarrow K^{0}p\pi^{-}$ decay has been obtained with 1 fb⁻¹

[LHCb, JHEP 05 (2016) 08]

First observation of the decays $\Lambda_b^0 \rightarrow \Lambda K^+ \pi^-$ (8.1 σ) and $\Lambda_b^0 \rightarrow \Lambda K^+ K^-$ (15.8 σ) with 3 fb⁻¹

Decays involving an un-reconstructed π^0 or photon are shown with the magenta and cyan lines, respectively

R. Coutinho (UZH)

[LHCb, JHEP 05 (2016) **08**]

First observations: $\mathcal{B}(\Lambda_b^0 \to \Lambda K^+ K^-) = (15.9 \pm 1.2 \pm 1.2 \pm 2.0) \times 10^{-6}$ $\mathcal{B}(\Lambda_b^0 \to \Lambda K^+ \pi^-) = (5.6 \pm 0.8 \pm 0.8 \pm 0.7) \times 10^{-6}$ **Evidence:** $\mathcal{B}(\Lambda_b^0 \to \Lambda \pi^+ \pi^-) = (4.6 \pm 1.2 \pm 1.4 \pm 0.6) \times 10^{-6}$ Limits (No hints for any Ξ_{b}^{0} mode): $f_{\Xi_b^0}/f_{\Lambda_b^0} \times \mathcal{B}(\Xi_b^0 \to \Lambda \pi^+ \pi^-) < 1.7 (2.1) \times 10^{-6} \text{ at } 90 (95) \% \text{ CL}$ $f_{\Xi_b^0}/f_{\Lambda_b^0} \times \mathcal{B}(\Xi_b^0 \to \Lambda K^+ \pi^-) < 0.8 \,(1.0) \times 10^{-6} \text{ at } 90 \,(95) \,\% \text{ CL}$ $f_{\Xi_b^0}/f_{\Lambda_b^0} \times \mathcal{B}(\Xi_b^0 \to \Lambda K^+ K^-) < 0.3 \,(0.4) \times 10^{-6} \text{ at } 90 \,(95) \,\% \text{ CL}$

$$\mathcal{A}_{CP}(\Lambda_b^0 \to \Lambda K^+ \pi^-) = -0.53 \pm 0.23 \,(\text{stat}) \pm 0.11 \,(\text{syst})$$

 $\mathcal{A}_{CP}(\Lambda_b^0 \to \Lambda K^+ K^-) = -0.28 \pm 0.10 \,(\text{stat}) \pm 0.07 \,(\text{syst})$

Excess at low m(K⁺K⁻) consistent with a φ resonance (dedicated analysis at LHCb): [LHCb, PLB 759 (2016) 282]

$$\mathcal{B}(\Lambda_b^0 \to \Lambda \phi) = 5.18 \pm 1.04 \,(\text{stat}) \pm 0.35 \,(\text{syst})^{+0.50}_{-0.43} \,(\text{norm}) \pm 0.44 (f_d/f_{\Lambda_b^0}) \times 10^{-6}$$

First observation (5.9 σ) of the baryonic version of $B_s^0 \rightarrow \phi \phi$ version and measurement of triple-product asymmetry consistent with zero

R. Coutinho (UZH)

Searches for CP violation in four body b-baryon decays

LHCb results : $\mathcal{L} = 3 \, \text{fb}^{-1} - 2011 + 2012 \, \text{dataset}$

First evidence for CP violation in $\Lambda^0{}_b \rightarrow p\pi^-\pi^+\pi^-$ decays

[LHCb, Nature Physics 13 (2017) 391-396]

CP violation measurements in $\Lambda^0_b \rightarrow p\pi[\pi^+\pi, K^+K]$

[LHCb, Nature Physics 13 (2017) 391]

First evidence for CP violation with 3.3 standard deviations!

General conclusions

- Searches for CPV in *b*-baryons are still in the early stages but with increased data from the LHC this area is becoming more of interest
 - * Also in the charmonium and semi-leptonic sector, *e.g.* $\Lambda^{0}_{b} \rightarrow J/\psi p \{\pi, K^{-}\}$ [LHCb, JHEP 07 (2014) 103] and $\Lambda^{0}_{b} \rightarrow pK^{-}\mu^{+}\mu^{-}$ decays [LHCb, JHEP 06 (2017) 108]
- *CP* violation is expected in the baryon sector and first evidence in $\Lambda^{0}_{b} \rightarrow p\pi\pi^{+}\pi$ decays has been seen by LHCb
- Many interesting results are foreseen with the LHCb Run-II data
 - Precise measurement two body decays, *e.g.* Λ^{0}_{b} → pK⁻, pπ⁻
 - Local phase-space A_{CP} measurements can further reveal the presence of CPV in multi-body decays

[Backup]

The LHCb experiment

[Int. J. Mod. Phys. A 30 (2015) 1530022]

The LHCb experiment

LHCb Integrated Luminosity in pp collisions 2010-2016

R. Coutinho (UZH)

[Backup]

Analysis strategy for $\Lambda^{0}{}_{b}(\Xi^{0}{}_{b}) \rightarrow \Lambda h^{\pm}h^{\cdot} \mp$

Searches for the unobserved decays $\Lambda_b^0(\Xi_b^0) \rightarrow \Lambda h^{\pm}h^{\mp}$ $(h^{(\prime)} \in {\pi^{\pm}, K^{\pm}})$ BF relative to $\Lambda_b^0 \rightarrow (\Lambda_c^+\pi^+)\pi^-$

K⁰_S reconstruction performed via two categories: Downstream (DD) or Long Tracks (LL)

Dynamical structure of DP is correct non-uniform ε_{sig} over $d\Gamma \sim |\mathcal{M}|^2 dE_1 dE_2 d\alpha d(\cos \beta) d\gamma$

Veto intermediate open charm states: *i.e.* Ξ^+_c , D⁰, Λ^+_c

Direct CP violation measurement is naturally available (simultaneous fit)

JHEP 05 (2016) 08

20