IDENTIFICATION OF BOOSTED W BOSONS AND TOP QUARKS WITH MACHINE LEARNING IN ATLAS

Ece Akıllı Université de Genève

Joint Annual Meeting of the Swiss Physical Society and Austrian Physical Society August 23, 2017

W-BOSON AND TOP-QUARK TAGGING IN ATLAS

- W bosons and top quarks have short lifetime
- Decay products of high-momentum (boosted) hadronically decaying W bosons and top quarks are collimated
- Resolved object identification techniques are not successful
- Construct large-radius (large-R) jets
- Use substructure information to identify the W boson and top quark within dijet background
 Jet Substructure

2

APPLICATION OF BDTS AND DNNS TO W AND TOP TAGGING USING HIGH-LEVEL FEATURES <u>ATLAS-CONF-2017-064</u>

- Construct a classifier by using substructure variables
 - Combine available information to obtain good discrimination
- Two Machine Learning (ML) techniques in parallel
 - Boosted Decision Tree (BDT)
 - Deep Neural Network (DNN)
- Train binary classifiers: W/top vs Dijet

STRATEGY

- Split Monte Carlo (MC) simulation samples in training and testing sets
- Optimize BDT, DNN using MC
 - Set of inputs
 - Architecture and training hyper-parameters
- Performance comparison of ML taggers with reference taggers in MC
 - Current taggers in ATLAS
 - 2-variable taggers
 - HEPTopTagger (Only for tops)
 - Shower Deconstruction (Only for tops)
 - BDT tagger
 - DNN tagger
- Study the performance in data

OPTIMIZATION AND PERFORMANCE STUDIES IN MC

BDTTRAINING - INPUTS OPTIMIZATION

W-Boson Tagging

Top-Quark Tagging

- Add variables in order of importance (improvement in rejection)
- Use a flat p_T spectrum (evaluation)
- Saturation of rejection

DNNTRAINING - INPUTS OPTIMIZATION

W-Boson Tagging

- Study different groups of input variables
- Groups are defined by varying features (scale-dependence, ...)
- Use a flat p_T spectrum (evaluation)
- Choose the set with the highest background rejection
- Observed the significance of the scale and jet mass
 - Example: Group 4 = Group 3 + mass

DNNTRAINING - INPUTS OPTIMIZATION

Top-Quark Tagging

- Study different groups of input variables
- Groups are defined by varying features (scale-dependence, ...)
- Use a flat p_T spectrum (evaluation)
- Choose the set with the highest background rejection
- Observed the significance of the scale and jet mass

• Example: Group 6 = Group 5 + mass

PERFORMANCE COMPARISON

Background Rejection at Fixed-Efficiency Working Point

W-Boson Tagging

Top-Quark Tagging

- BDT & DNN: Improvements observed for both W and top tagging
- Improvement is more significant for top tagging

PERFORMANCE STUDIES IN DATA

- Measure signal efficiency and background rejection in data
- Full ATLAS 2015+2016 dataset: (36.1 36.7)fb⁻¹
- Signal: ttbar with single leptonic top decay Background: Different background topologies, different features
 - Dijet events
 - Photon + jet events

WTAGGING PERFORMANCE IN DATA - SIGNAL

DNN Discriminant

Signal Efficiency

TOP TAGGING PERFORMANCE IN DATA - SIGNAL

DNN Discriminant

Signal Efficiency

• Well modelled

12

WTAGGING PERFORMANCE IN DATA - BACKGROUND

DNN Discriminant

Background Rejection

Well modelled

TOP TAGGING PERFORMANCE IN DATA - BACKGROUND

DNN Discriminant

Background Rejection

• Well modelled

CONCLUSION

Combining high-level inputs in BDT and DNN improves background rejection

Observed similar performance for BDT and DNN

Signal efficiency measurement in data & MC

• Modelling in agreement with data within uncertainties

Background rejection measurement in data & MC

- Modelling in agreement with data for baseline MC generators
- Similar background rejection in the common region

THANKYOU!

APPLICATION OF BDTS AND DNNS TO W AND TOP TAGGING USING HIGH-LEVEL FEATURES

- Numerous substructure variables are available and are used by ATLAS
- Feed the ML algorithms with jet substructure variables (high-level features)
- Study the performance of *W* and top tagging with two Machine Learning (ML) techniques in parallel

SAMPLES

Training & Testing Samples

• Split signal and background (dijet) in training and testing samples

Training Event Weights: Signal and background samples are weighted to flat truth p_T distribution

Testing Event Weights: Signal samples are weighted to match background (dijet) truth p_T distribution

INPUTS

Observable	Variable	Used For	Reference
Jet mass	m^{comb}	$_{\mathrm{top},W}$	[35]
Energy Correlation Ratios	ECF_1, ECF_2, ECF_3	$_{\mathrm{top},W}$	[41, 42]
	C_2, D_2		
N-subjettiness	$ au_1, au_2, au_3$	$_{\mathrm{top},W}$	[43, 44]
	$ au_{21}, au_{32}$		
Center of Mass Observables	Fox Wolfram $(R_2^{\rm FW})$	W	[45]
Splitting Measures	$Z_{ ext{cut}}$	W	[46]
	$\sqrt{d_{12}},\sqrt{d_{23}}$	$_{\mathrm{top},W}$	[47]
Planar Flow	\mathcal{P}	W	[48]
Angularity	a_3	W	[49]
Aplanarity	A	W	[50]
KtDR	KtDR	W	[51]
Qw	Q_w	top	[46]

DNNTRAINING - INPUTS OPTIMIZATION

W-Boson Tagging

- Study different groups of input variables
- Groups are defined by varying features (scale-dependence, ...)
- Use a flat p_T spectrum (evaluation)
- Choose the set with the highest background rejection
- Observed the significance of the scale and jet mass

Group 1	$\tau_1, \tau_2, e_3, m^{\text{comb}}, p_{\text{T}}$
Group 2	$\tau_1, \tau_2, e_3, m^{\text{comb}}, p_{\text{T}}, \sqrt{d_{12}}, \text{KtDR}$
Group 3	$ au_{21}, C_2, D_2, R_2^{\text{FW}}, \mathcal{P}, a_3, A, Z_{\text{cut}}$
Group 4	$ au_{21}, C_2, D_2, R_2^{\overline{FW}}, \mathcal{P}, a_3, A, Z_{CUT}, m^{comb}$
Group 5	$ au_{21}, C_2, D_2, R_2^{\text{FW}}, \mathcal{P}, a_3, A, Z_{\text{cut}}, m^{\text{comb}}, p_{\text{T}}$
Group 6	$\tau_1, \tau_2, e_3, m^{\text{comb}}, p_{\text{T}}, R_2^{\text{FW}}, \sqrt{d_{12}}, \text{KtDR}, a_3, A$
Group 7	$\tau_{21}, C_2, D_2, R_2^{\text{FW}}, \mathcal{P}, a_3, A, Z_{\text{cut}}, m^{\text{comb}}, \sqrt{d_{12}}, \text{KtDR}$
Group 8	$\tau_{21}, C_2, D_2, R_2^{\text{FW}}, \mathcal{P}, a_3, A, Z_{\text{cut}}, m^{\text{comb}}, p_{\text{T}}, \sqrt{d_{12}}, \text{KtDR}$
Group 9	$\tau_1, \tau_2, \tau_{21}, \sqrt{d_{12}}, C_2, D_2, e_3, m^{\text{comb}}, p_{\text{T}}, R_2^{\text{rw}}, \mathcal{P}, a_3, A, Z_{\text{cut}}, \text{KtDR}$

DNNTRAINING - INPUTS OPTIMIZATION

Top-Quark Tagging

- Study different groups of input variables
- Groups are defined by varying features (scale-dependence, ...)
- Use a flat p_T spectrum (evaluation)
- Choose the set with the highest background rejection
- Observed the significance of the scale and jet mass

/e background rejection (1/∈ ^{rel})	9 8 7 6 5 4 ATLAS Simulation Preliminary $\sqrt{s} = 13$ TeV, DNN Top Tagging $e_{sig}^{rel} = 80\%$
back	$\sqrt{s} = 13 \text{ TeV}$, DNN Top Tagging
lative	p_{T}^{frum} : [350,2000] GeV
Re	$0^{\frac{1}{G_{rourp}, G_{rourp}, G$
	Training input groups

Group 1	$C_2, D_2, \tau_{21}, \tau_{32},$
Group 2	$C_2, D_2, \tau_{21}, \tau_{32}, m^{\text{comb}}$
Group 3	$C_2, D_2, \tau_{21}, \tau_{32}, m^{\text{comb}}, p_{\text{T}}$
Group 4	$\tau_1, \tau_2, \tau_3, e_3, m^{\text{comb}}, p_{\text{T}}$
Group 5	$C_2, D_2, \tau_{21}, \tau_{32}, \sqrt{d_{12}}, \sqrt{d_{23}}, Q_W$
Group 6	$C_2, D_2, \tau_{21}, \tau_{32}, \sqrt{d_{12}}, \sqrt{d_{23}}, Q_W, m^{\text{comb}}$
Group 7	$\tau_1, \tau_2, \tau_3, e_3, m^{\text{comb}}, p_{\text{T}}, \sqrt{d_{12}}, \sqrt{d_{23}}, Q_W$
Group 8	$C_2, D_2, \tau_{21}, \tau_{32}, \sqrt{d_{12}}, \sqrt{d_{23}}, Q_W, m^{\text{comb}}, p_{\text{T}}$
Group 9	$\tau_1, \tau_2, \tau_3, \tau_{21}, \tau_{32}, \sqrt{d_{12}}, \sqrt{d_{23}}, Q_W, C_2, D_2, e_3, m^{\text{comb}}, p_{\text{T}}$
No. Of State of States of States	

DNNTRAINING - HYPER-PARAMETER OPTIMIZATION

Earlier studies: ATL-PHYS-PUB-2017-004

Grid search for DNN

 Varied: Learning rate (lr), regularizer (r), number of hidden layers

Fixed:

- Layer type = Dense with Batch Normalization
- Activation function = Rectified linear units
- Weight initialization = Glorot uniform

Similar grid search carried out for top-quark tagging and BDT

PERFORMANCE EVALUATION

- BDT & DNN: Improvements observed for both W and top tagging
 Magnitude of improvement differs for W and top tagging, but not the
 - overall benefit of using a BDT or DNN

PILE-UP ROBUSTNESS

Robustness against pile-up

• Further investigation and evaluation of uncertainties are pending

Robustness against pile-up

• Further investigation and evaluation of uncertainties are pending

