

Electron cloud effects in hadron colliders

L. Mether (EPFL), G. Rumolo (CERN)

With input from: I. Bellafont, E. Belli, L. Carver, G. Iadarola, R. Kersevan, K. Li, K. Ohmi, A. Romano, M. Schenk, F. Zimmermann

Electron cloud build-up

$$\delta(E) = \frac{I_{\text{emit}}}{I_{\text{imp}}(E)}$$

Secondary Electron Yield (SEY)

 Ratio between emitted and impacting electron current, as function of the energy of the impinging electrons

Avalanche electron production → steady state

Bunch spacing (e.g. 25 ns)

Seed electron production

Photoelectrons from

synchrotron radiation

Desorption

Residual gas ionization

Time

Effects of electron cloud

- Beam dynamics: trailing bunches interact with a dense e-cloud
 - Transverse instabilities
 - Tune shift & spread
 - → Emittance growth
 - → Beam loss & poor lifetime

- Machine conditions: electrons impacting on the chamber wall
 - Additional heat load
 potential problem in cryogenic machine (limited cooling capacity)
 - Outgassing, fast pressure rise
 → danger for sensitive equipment

Ingredients for e-cloud build-up

- A multi-disciplinary problem that is the sum of several key ingredients
- Beam screen:
 - Transverse size and geometry
- Beam parameters
 - Bunch intensity and length
 - Bunch spacing → how many electrons are lost before the next bunch
- Magnetic fields
 - Electrons trapped around field lines

Ingredients for e-cloud build-up

- A multi-disciplinary problem that is the sum of several key ingredients
- Beam screen:
 - Surface properties:
 - Secondary electron yield, but also photoelectron yield, (photon reflectivity)
 - → Surface chemical properties, roughness
 - Also history of the surface, in particular accumulated electron dose:
 - To a certain extent the e-cloud cures itself → beam induced scrubbing

5

E-cloud in the LHC

LHC in 2015: beam stability

- Strong e-cloud in the machine → difficult to maintain beam stability
 - Optimized operational settings to preserve transverse emittances
 - Strong feedback
 - High chromaticity (Q'_{H/V}=20)
 - High octupole settings ($\Delta Q = 1.5 \times 10^{-3}$)

Optimized tunes at injection to accommodate tune footprint from Q', octupoles

and e-cloud

LHC in 2015: heat load

- Approached limit of cooling capacity on arc beams screens with ~1450 b.
- Additional margin could be gained by:
 - Increased longitudinal emittance blow-up on the ramp → longer bunches
 - Optimized filling scheme to gain additional margin → shorter trains
 - Scrubbing

LHC in 2015: heat load

- Additional margin could be gained by:
 - Increased longitudinal emittance blow-up on the ramp → longer bunches
 - Optimized filling scheme to gain additional margin → shorter trains
 - Scrubbing

→ Heat load/bunch significantly decreased during the physics run

Lessons from the LHC

- LHC is still running with considerable e-cloud
 - The design number of bunches (2760) could not currently be accelerated
 - + The beam quality is good
 - + The performance is very good
 - + Records in 2017:
 - 1.75 x10³⁴ cm⁻²s⁻¹ peak luminosity
 - 2460 bunches

Running a collider with e-cloud is a struggle, but not hopeless!

When designing future hadron colliders, e.g. HE-LHC or FCC-hh, we should aim to avoid the struggle and make the machines e-cloud free from the beginning

E-cloud in FCC-hh

- E-cloud build-up can be suppressed by
 - Minimizing the SEY with surface treatments, e.g. a-C coating
 - Suppressing seed electrons also beneficial, e.g. FCC-hh beam chamber design
 - → To understand to what extent these measures are required, complete simulation studies of e-cloud build-up and instability are necessary
- E-cloud induced instability simulations are a multi-scale study
 - In space: small beam (100 um) in a big chamber (3 cm)
 - In time: e⁻ motion resolved to ns scale, instability development can take ~10 s
 - → A single simulation may require ~10s of CPU months

Threshold electron density for instability in FCC-hh dipole for 25 ns beam at 3.3 TeV

E-cloud in FCC-hh

• Build-up simulations show that even for low SEY \sim 1 – 1.1, electron densities can reach instability threshold due to photoelectrons

- Depending on the number photons that reach the main chamber and the photoelectron yield
 - → Iterations with beam screen design to try to suppress further

Summary

- Electron cloud is undesired effect in hadron colliders, with detrimental effects both on beam quality and machine conditions
- Present in the LHC since start of Run 2 (→ 25 ns bunch spacing)
- Design of future accelerators should be such that e-cloud is avoided
- Requires extensive studies to determine constraints
 - Multi-disciplinary → affects design on multiple levels

Thank you!