Progress report of the ASACUSA Č H HFS experiment

Volkhard Mäckel
on behalf of the ASACUSA collaboration

Stefan-Meyer-Institut Wien

Joint Annual Meeting of SPS and ÖPG 2017
August 24th 2017
Lorentz symmetry is a cornerstone of modern physics
- Quantum Field Theory (QFT)
- Einstein’s theory of general relativity

Ongoing search for new theories
- Gravity not incorporated in QFT, dark matter, missing antimatter in universe...
- Many theories break Lorentz symmetry at some small level
- Finding Lorentz violating effects could lead to new physics

Standard Model Extension (SME) by Alan Kostelecky:
Parameterization of Lorentz-violating effects
- Allows for direct comparison of many experiments
- Compare groundstate hyperfine splitting (GS-HFS) in H + H: potential for highest sensitivity on absolute energy scale

Asacusa collaboration aims at measuring the GS-HFS of H
Lorentz symmetry is a cornerstone of modern physics
- Quantum Field Theory (QFT)
- Einstein’s theory of general relativity

Ongoing search for new theories
- Gravity not incorporated in QFT, dark matter, missing antimatter in universe...
- Many theories break Lorentz symmetry at some small level
- Finding Lorentz violating effects could lead to new physics

Standard Model Extension (SME) by Alan Kostelecky: Parameterization of Lorentz-violating effects
- Allows for direct comparison of many experiments
- Compare groundstate hyperfine splitting (GS-HFS) in H + \(\bar{H} \): potential for highest sensitivity on absolute energy scale

Asacusa collaboration aims at measuring the GS-HFS of \(\bar{H} \)
Lorentz symmetry is a cornerstone of modern physics
- Quantum Field Theory (QFT)
- Einstein’s theory of general relativity

Ongoing search for new theories
- Gravity not incorporated in QFT, dark matter, missing antimatter in universe...
- Many theories break Lorentz symmetry at some small level
- Finding Lorentz violating effects could lead to new physics

Standard Model Extension (SME) by Alan Kostelecky:
Parameterization of Lorentz-violating effects
- Allows for direct comparison of many experiments
- Compare groundstate hyperfine splitting (GS-HFS) in $H + \bar{H}$: potential for highest sensitivity on absolute energy scale

Asacusa collaboration aims at measuring the GS-HFS of \bar{H}
Lorentz symmetry is a cornerstone of modern physics
- Quantum Field Theory (QFT)
- Einstein’s theory of general relativity

Ongoing search for new theories
- Gravity not incorporated in QFT, dark matter, missing antimatter in universe...
- Many theories break Lorentz symmetry at some small level
- Finding Lorentz violating effects could lead to new physics

Standard Model Extension (SME) by Alan Kostelecky:
- Parameterization of Lorentz-violating effects
 - Allows for direct comparison of many experiments
 - Compare groundstate hyperfine splitting (GS-HFS) in H + H: potential for highest sensitivity on absolute energy scale

Asacusa collaboration aims at measuring the GS-HFS of H
Measurement principle

- Production of \bar{H} in dedicated trap
- Trap emits beam of polarized LFS \bar{H}
- Induce spin-flips with microwave cavity: LFS become HFS
- Analyze spin states with sextupole
- Detector counts \bar{H}
H: GS-HFS known with a precision of 1.4×10^{-12}
- Only need to measure \bar{H}

\bar{H}: Recent measurement by ALPHA: 4×10^{-4}
- Trapping \bar{H} with strong inhomogenic magnetic fields
- Get HFS by difference between π_1 and π_2 transitions
- Result is consistent with GS-HFS in H
- Not sensitive to CPT within the mSME

ASACUSA will measure HFS B-field free using \bar{H}-beam, measure transition directly
Experimental Setup

Mixing trap + spectroscopy beamline

Double-Cusp trap Cavity Sextupole Detector
Mixing pbar and positrons

- Spectroscopy part: fully tested with hydrogen beamline
- Current work: optimizing $\bar{\text{H}}$ production
 (mixing $\bar{\text{p}}$ and e^+)

Optimization of mixing:
- Short setup: mount detector close to trap
- Fieldionizer before detector: ionizes and blocks $\bar{\text{H}}$ above a given n-state
- $\bar{\text{H}}$ with lower n-state are counted

Volkhard Mäckel, on behalf of the ASACUSA collaboration

Progress report of the ASACUSA $\bar{\text{H}}$ HFS experiment
Mixing antiprotons and positrons

- Trapping of \bar{p} and positrons
 - axially by MRE
 - radially by magnetic field
- prepare $\approx 60 \times 10^6$ e$^+$
- inject $\approx 3 \times 10^6 \bar{p}$
- pull up upstream potential barrier
- only neutral \bar{H} can leave trap
Results: Measurement of n-state distribution

Time and quantum distribution of detected \bar{H}

- 43 mixing runs in total
- False positive rate: 0.0038 s^{-1}
- $n<14$ significance: $6 \sigma \quad \tau (n=14) \approx 50 \mu\text{s}$
What are the next steps?

- Optimize production of $\bar{\text{H}}$ in ground state
- Scan GS-HFS
 - Goal: 10^{-6} precision
 - 8000 $\bar{\text{H}}$ in ground state needed
- Proton size correction contributes in the order of 10^{-5}
- Assuming QED obeys CPT:
 Determine Zemach and magnetic radii of antiproton
Thank you very much for your attention!

Volkhard Mäckel, on behalf of the ASACUSA collaboration

Progress report of the ASACUSA $\bar{\text{H}}$ HFS experiment