Measurement of the CP violation parameter A_{Γ} in $D^0 \rightarrow h^+h^-$ decays at LHCb [PRL 118, 261803 (2017)]

Pietro Marino 23 August 2017

The Charm sector is a unique and powerful probe of SM and beyond

- Up-type quark
 - complements searches done in K and B systems.
- Huge data samples
 - only recently reached sensitivity to probe BSM physics.

SM predictions are hard

- push theory tools development.

[JPC Ser. 556 (2014) 012001]

$D^0 - \overline{D}^0 = B^0 - \overline{B}^0 = B_s - \overline{B}_s$

$\frac{[LHCb-CONF-2016-005]}{HCb Preliminary}$ $\frac{011+12 \text{ data}}{0^{\circ} \rightarrow K^{\pi^{+}}}$ ignal: 630 million 0.63 Billions $1850 \qquad 1900$ $K^{-}\pi^{+} \text{ mass } [MeV/c^{2}]$

Flavour mixing in the Charm sector is well established

Mass eigenstates ≠ flavour eigenstates $|D_{1,2}\rangle = p |D^0\rangle \pm q |\bar{D}^0\rangle$

Mixing parameters $\leq O(10^{-2})$:

 $x = 2(m_1 - m_2)/(\Gamma_{1+}\Gamma_2)$

 $(\Gamma_1 - \Gamma_2)/(\Gamma_1 + \Gamma_2)$ $\mathbf{v} =$

-0.2 SM predictions affected by large -0.4 uncertainties ~ $O(10^{-2} - 10^{-7})$ -0.6 π^+, K^+, \dots d, s, b $d.\overline{s}.$ \overline{u} π^{+C} , K '. s. b π^{-}, K^{-}, \dots WCKM and GIM suppressed in SM Large theory uncertainties

(%) > 1.2

0.8

0.6

0.4

0.2

0

CP violation yet unobserved

- Small value expected from the SM of $O(V_{ub}V_{cb}^{*}/V_{us}V_{cs}^{*}) \leq 10^{-3}$
- Present sensitivity close to the SM expectation.

Ar is a golden observable to search for CPV

$$CPV \text{ in the mixing } |q/p| \neq 1$$

$$A_{\Gamma} \equiv \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(\overline{D}^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}^0 \to f)} \approx \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi_f - \left(\left| \frac{q}{p} \right| - \left| \frac{q}{p} \right| \right) \right] \right]$$

$$CPV \text{ in the integral}$$

where $\hat{\Gamma}$ is the effective decay width for $D^0 \rightarrow KK$ and $D^0 \rightarrow \pi\pi$. Time-dependent CP asymmetry at the first order in $t/\tau_D(x,y)$ $\sim 10^{-2}$)

$$A_{CP}(t) = \frac{\Gamma_{D^0 \to f}(t) - \Gamma_{\overline{D}^0 \to f}(t)}{\Gamma_{D^0 \to f}(t) + \Gamma_{\overline{D}^0 \to f}(t)} \approx A_{CP}^{\text{dir}} + A_{CP}^{\text{ind}} - \frac{1}{2}$$

neglecting CPV in the D⁰ \rightarrow f decay we obtain $A_{CP}^{\text{ind}} = -A_{\Gamma}$

 $\left|+\left|\frac{P}{a}\right|\right)x\sin\phi_{f}$

terference $\phi_f \neq 0, \pi$

t τ_D

Flavour identification (tagging) is done through D^{*+} decays

- D⁰ meson flavour cannot be determined from the CP-eigenstate final states K⁺K⁻ and $\pi^+\pi^-$.

LHCb detector: excellent tracking and particle identification performances

7

Measurement of A_{Γ} in $D^0 \rightarrow h^+h^-$ decays at LHCb: analysis strategy

Measure yield asymmetry in bins of D⁰ decay time

Detection asymmetry

$$A_{\mathsf{raw}}(t) = \frac{N(t; D^{*+} \to D^0 \pi^+) - N(t; D^{*-} \to \overline{D}^0 \pi^-)}{N(t; D^{*+} \to D^0 \pi^+) + N(t; D^{*-} \to \overline{D}^0 \pi^-)} \approx A_{\mathsf{P}}$$
$$\mathsf{D}^* \text{ production asymmetry}$$

- Correct for detection-induced charge asymmetries.
- \blacktriangleright Extract A_{Γ} through a linear fit to decay asymmetry as function of D⁰ decay time.

<u>Control sample: CF D⁰ \rightarrow K⁻ π ⁺ decay $A_{raw} = A_P + A_D + A_{CP}^{dir}$ </u>

LHCb data at 7 and 8 TeV corresponding to 3/fb

Yields in Millions sample \sqrt{S} $D^0 \rightarrow K^-\pi^+$ $D^0 \rightarrow K^+K^ D^0 \rightarrow \pi^+\pi^-$ 1.2 0.36 7 TeV 2011 Up 10.7 7 TeV 2011 Down 15.5 1.7 0.53 2012 Up 30.0 3.3 1.02 8 TeV 8 TeV 2012 Down 31.3 3.4 1.07 2.98 Total 87.5 9.6

Control sample A_{Γ} is incompatible with zero,

► $A_{\Gamma}(D^0 \rightarrow K^- \pi^+)$ results are incompatible	sample
with zero and with each others.	2011 Up
Not even straight lines.	2011 Dw
	2012 Up
Clear indication of very dangerous	2012 Dw
detection effect.	Average

$A_{\Gamma}(D^{0} \rightarrow K^{-}\pi^{+}) [10^{-3}]$ $+1.65 \pm 0.30$ -0.11 ± 0.25 $+0.77 \pm 0.18$ -0.06 ± 0.17 -0.41 ± 0.10

How the momentum-dependent charge asymmetries generate time-dependent charge asymmetries

Momentum dependency removed by reweighting the soft pion kinematics

Each subsample (2 magnet polarity x 2 centre of mass energy) is **independently** reweighted with the ratio

> $n^+(k,\theta_x,\theta_y)$ $n^{-}(k,-\theta_{x},\theta_{y})$

$n^{-}(k,-\theta_{x})$ 10^{2} 0.2 -0.2 θ_x [rad]

A_r results in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$

Same procedure of control sample $D^0 \rightarrow K^-\pi^+$

 $A_{\Gamma}(D^{0} \rightarrow K^{+}K^{-}) = (-0.30 \pm 0.32 \pm 0.10)$ $A_{\Gamma}(D^{0} \rightarrow \pi^{+}\pi^{-}) = (+0.46 \pm 0.58 \pm 0.12)$

Main systematic: contribution from secondaries (nonprompt D^{*}).

The most precise measurement of CP violation in the charm sector [PRL 118, 261803 (2017)]

▶ Yet no CPV observed at 2.6x10⁻⁴.

LHCb Upgrade and Beyond

- Precision measurements of mixing and CP violation are important tools to test the SM at energy scales and couplings unaccessible at the energy frontier.
- Analysis update with Run2 data in progress: already the statistics of the Run1.

- Get ready for the LHCb Upgrade (Run3–4, 50fb⁻¹).
- Phase2 upgrade is under discussion (Run5-..., 300 fb⁻¹)

Ð

0.4

0.2

0

-0.2

[CERN-LHCC-2017-003]

I AVWorld Average Ian 2017
LAV World Average Jan 2017
LAVWA Jan 2017 + LHCb 300/fb –
0.9 1 1.1 1.2
lq/p

Thanks

Measurement of the CP violation parameter A_{Γ} in $D^0 \rightarrow h^+h^-$ decays at LHCb [PRL 118, 261803 (2017)]

Pietro Marino 23 August 2017

Analysis validation

- Several pseudoexperiments have been performed injecting different fake values of A_{Γ}
- The reconstructed value accurately tracks the input value of A_{Γ}

$A_{\Gamma}(D^0 \rightarrow K^+K^-)$ results

$$\begin{array}{c} 2.23 \pm 0.89 \ (30/27) \\ 0.46 \pm 0.90 \ (28/27) \ 7) \\ 0.29 \pm 0.74 \ (19/27) \\ -0.54 \pm 0.75 \ (20/27) \ 7) \\ 0.54 \pm 0.75 \ (20/27) \ 7) \\ 1.13 \pm 0.54 \ (63/27) \\ -0.86 \pm 0.54 \ (40/27) \ 7) \\ 0.61 \pm 0.53 \ (22/27) \\ 0.10 \pm 0.53 \ (20/27) \ 7) \\ 0.93 \pm 0.31 \ (3/3) \\ -0.30 \pm 0.32 \ (2.5/3) \\ \end{array}$$

$A_{\Gamma}(D^0 \rightarrow \pi^+\pi^-)$ results

$$\begin{array}{c}
4.94 \pm 1.62 (24/27) \\
3.80 \pm 1.65 (21/27) \\
) \\
-0.71 \pm 1.35 (14/27) \\
-1.76 \pm 1.37 (14/27) \\
) \\
-1.76 \pm 1.37 (14/27) \\
) \\
3.54 \pm 0.98 (17/27) \\
1.42 \pm 0.99 (20/27) \\
) \\
3.54 \pm 0.99 (20/27) \\
) \\
0.23 \pm 0.95 (38/27) \\
-0.50 \pm 0.96 (35/27) \\
) \\
1.77 \pm 0.57 (13/3) \\
0.46 \pm 0.58 (8.7/3) \\
)
\end{array}$$