Searches for SUSY via strong production in fully hadronic final states at CMS

Why fully hadronic?

Largest cross section for **strong production, gluinos & squarks,** of SUSY

Largest branching ratio to jets

Fully hadronic searches of strongly produced SUSY

 \rightarrow discovery channel at energy frontier

Characteristics of a SUSY event

Assuming **R parity** to be **conserved**:

- SUSY particle produced in **pairs**
- Large missing transverse energy (ME_τ) from 2 undetected neutralinos
- Many jets
- A lot of hadronic activity

Strategy for fully hadronic inclusive searches

- Lepton veto
- Sensitivity to very different signals through binning in jet & b-jet multiplicity

Binning in H_T for energy scale sensitivity

$$\mathbf{H}_T = \sum_{jets} \left| \vec{p_T} \right|$$

• Discovery variable M_{T2} :

 $M_{T2}(m_c) = \min_{\vec{p}_T^{c(1)} + \vec{p}_T^{c(2)} = \vec{p}_T^{miss}} [\max(M_T^{(1)}, M_T^{(2)})]$

Main backgrounds

- QCD multi-jet:
 - Mis-measurement of a jet
 leads to imbalanced event
 → instrumental ME_T
- W-jets & ttbar (Lost lepton):
 - ME_T from neutrino from leptonic W decay
 - Charged lepton not caught by lepton veto
- Z_{νν}+jets:
 - ME_{T} from the two neutrinos

QCD background estimate via $\Delta \Phi$

- Invert $\Delta \phi$ (ME_T, jets) cut $r_{\phi} = \frac{N(\Delta \phi_{min}(jets, E_T^{miss}) > 0.3)}{N(\Delta \phi_{min}(jets, E_T^{miss}) < 0.3)}$
- Fit r_{ϕ} at low M_{τ_2} & extrapolate to signal region inclusively in each H_{τ} region
 - \rightarrow Then split among $N_j/N_{\rm b}$ with data based transfer factors

$$N_{QCD}^{SR} = N^{CR} (H_T, M_T) \cdot r_{\phi} (M_T) \cdot f_j (H_T) \cdot r_b (N_j)$$

QCD estimate: transfer factors

Lost Lepton estimate

Data/MC

Suppress with efficient lepton veto

$Z \rightarrow \nu \nu$ Estimate

High stats control region

 $Z \rightarrow H$

Large systematic uncertainties due to fragmentation photons & theoretical uncertainy on Z/γ ratio

Remove *ll*to model Z → vv

- Lower stats, now possible with 40 fb⁻¹
- Lower uncertainties (same process)
- Account for purity due to Top from eµ data control region

Selected results

Good agreement with the standard model

Exclusion Limits – Gluino production

Extended reach up to about 2 TeV along gluino mass

Exclusion Limits – Direct squark production

Extended reach by to about 1TeV along squark mass

Conclusions

- Showed results of a fully hadronic search for SUSY with the M_{T2} variable with 35.9 fb⁻¹ collected by the CMS detector
- Probed the direct squark and gluino production at the energy frontier
- No significant excess over background predictions:
 → Exclude masses of up to about 2 TeV for gluinos and 1 TeV for squarks

Documentation: **SUS-16-036** arxiv1705.04650

BACK UP

The CMS detector

The M_{T2} Variable

 M_{τ2} is a generalized ME_τ like variable for decays with 2 unobserved particles

$$M_{T2}(m_c) = \min_{\vec{p}_T^{c(1)} + \vec{p}_T^{c(2)} = \vec{p}_T^{miss}} [\max(M_T^{(1)}, M_T^{(2)})]$$

 Split visible part of event into 2 hemispheres (pseudojets) for calculation of M_{T2}


```
Approximative formula:

(M_{T2})^2 \sim p_T(J1) \cdot p_T(J2) \cdot (1 + \cos \phi_{12})
```

J1

Aggregate signal regions & covariance matrix for easier reinterpretation

Region	$N_{\rm j} H_{\rm T} [{\rm GeV}]$	<i>M</i> _{T2} [GeV]	Prediction	Data	$N_{95}^{ m obs}$
2j loose	$\geq 2 > 1000$	>1200	38.9 ± 11.2	42	26.6-27.8
2j tight	$\geq 2 > 1500$	> 1400	2.9 ± 1.3	4	6.5–6.7
4j loose	$\geq 4 > 1000$	>1000	19.4 ± 5.8	21	15.8-16.4
4j tight	$\geq 4 > 1500$	>1400	2.1 ± 0.9	2	4.4-4.6
7j loose	$\geq 7 > 1000$	>600	$23.5^{+5.9}_{-5.6}$	27	18.0–18.7
7j tight	$\geq 7 > 1500$	>800	$3.1^{+1.7}_{-1.4}$	5	7.6–7.9

Signal	12.9 fb ⁻¹	Expected limit [fb] (full analysis)	Expected limit [fb] (best aggregated region)	
$pp \rightarrow \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $(m_{\tilde{g}} = 1700 \text{GeV}, m_{\tilde{\chi}_{1}^{0}} = 0 \text{GeV})$		1.80	3.84	
$pp \rightarrow \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $(m_{\tilde{g}} = 1000 \text{GeV}, m_{\tilde{\chi}_{1}^{0}} = 950 \text{GeV})$		234	498	

Full analysis give significantly better limits than the best aggregate region

Exclusion Limits – Direct stop production

b