Radiation damage in the LHCb Silicon Tracker

University of Zurich^{uzH}

Genève, August 24, 2017 CHIPP - SPS - ÖPG joint annual meeting

Elena Graverini (Universität Zürich)

Introduction: Standard Model open questions

- No explanation for ν masses in the SM
- What happened to antimatter? CP violation is not enough!
-dark matter?...

Introduction: how to look for new physics?

- Direct search: production of new particles at accelerators:
 - $\circ~$ light, small coupling: beam dump
 - $\circ\,$ heavy, larger coupling: colliders LHC \longrightarrow CMS, ATLAS (general purpose detectors)
- **Indirect search:** probe processes sensitive to new particles intervening through loops
 - o need extremely precise instruments!
 - LHC \longrightarrow LHCb (optimized for b physics)

The LHCb detector...

...is a single-arm forward spectrometer at the LHC, covering 15-300 mrad

Elena Graverini (Universität Zürich)

Elena Graverini (Universität Zürich)

- · PID TO DISTINGUISH MESONIC FINAL STATES
- · ACCURATE TRACKING
- · EXTREMELY PRECISE VERTEXING

THE LHCB DETECTOR:

· CLEAN THEORETICAL PREDICTIONS

4/15

- · LONG LIVED
- · FORWARD-PRODUCED
- B HADRONS:

The LHCb detector...

The LHCb detector

Vertexing: two halves closing up to few mm from the beam line

- silicon strips, r and ϕ information
- 20 μ m JP resolution \implies PV-SV separation

The LHCb detector

Tracking system: $\sigma_m \sim 30 \text{ MeV}/c^2$, 96% efficiency

- silicon (TT + inner part of downstream tracker)
- straw tubes (outer part of downstream tracker)

The LHCb detector

PID: need good separation for π , K etc.

- 2 RICHs to cover whole momentum range
- muon detectors: 1 GEM and 4 gap chambers

The Silicon Tracker (ST): Tracker Turicensis (TT)

- 8.4 m² active area in front of the magnet
- two x layers, two 5° stereo layers
- $\sigma_{\rm hit}\sim 50\mu{\rm m}$
- staves made of 7 sensors wire-bonded according to occupancy ("sectors")
- TT feels the "tail" of the B field ⇒ allows for preliminary momentum estimate

Track reconstruction at LHCb

Run II: introduction of **VELO-TT** tracking algorithm in the trigger.

- \Rightarrow Tracking became 3× faster, allowing for:
 - more refined trigger selections
 - available resources to perform online calibration & alignment
- ⇒ Offline performances achieved in real time!

The Silicon Tracker (ST): Inner Tracker (IT)

- 3 stations of 2 x layers and 2 stereo layers each
- 4 m² active area, inner part of the downstream tracker
- $\sigma_{\rm hit} \sim 50 \mu {\rm m}$
- magnetic field bends charged particles out of IT acceptance \implies less occupancy than the TT

Silicon detectors: basics

- The amount of free charge carriers in standard silicon sensors is 10⁵ times higher than the amount of charge carriers generated by a ionizing particle
- Depletion of the p-n junction volume via a reverse-biased configuration: $w = \sqrt{2 \varepsilon \mu \rho V_{bias}}$, w thickness of the depleted region
- Minimal working point: full depletion voltage V_{fd} such that w = d

$$V_{fd} = \frac{d^2}{2\,\mu\,\varepsilon\,\rho}$$

where $\rho = \frac{1}{\mu e N}$ is the silicon resistivity for a doping concentration N, μ is the pairs mobility and d the thickness of the sensor.

Radiation damage in silicon sensors

Atoms may be displaced from their lattice positions, and subsequently diffuse. The creation of interstitials and vacancies (space charge) leads to:

- increase of *I*_{*leak*} due to the creation of additional energy levels
- increase of the voltage needed to transport charges through the full sensor thickness:

 $V_{fd} = \frac{e}{2\,\varepsilon} \left| N_{eff} \right| d^2 \!\!\!, \, {\rm where} \, \, N_{eff}$ is the effective doping level

• the defects in the lattice may act as traps for charged particles: decrease in collection efficiency. At effecting fluences above 10^{15} equivalent 1 MeV neutrons per cm², charges may no longer arrive at the collecting electrodes in 300 μ m thick sensors.

/ 15

The Hamburg model

Variation of $V_{fd} \iff$ Variation of N_{eff} (time, temperature, fluence)

 $\Delta N_{eff} = \mathbf{N}_{C}(\phi) + \mathbf{N}_{A}(\phi, t, T) + \mathbf{N}_{R}(\phi, t, T)$

Stable damage:

- removal of donors $\propto 1-e^{-c\phi}$
- increase of acceptors $\propto \phi$

Annealing:

• recombination of defects $\propto \phi \times e^{-t/\tau_A(T)}$

Reverse annealing:

• combination of individual defects $\propto \phi imes \left(1 - \frac{1}{1 + t/\tau_R(T)}\right)$

/ 15

Charge Collection Efficiency (CCE) scans

Monitoring of the ST radiation damage. Detector installed in the LHCb cavern \Longrightarrow in-situ CV, IV scans not possible!

- V_{fd} must be measured on data!
- CCE scans: probe charge collection efficiency as a function of V_{bias}
- CCE saturation $\equiv V_{fd}$
- dedicated data taking runs 3-4 times per year
- one TT and one IT layer probed, the others used for track reconstruction

track selection tuned on data

/15

Charge Collection Efficiency (CCE) scans

Charge mobility depends on V_{bias} . $\Rightarrow \forall V_{bias}$, access the whole pulse by recording data at several δt .

• $\forall V_{bias}, \delta t$:

find MPV of ADC distribution. Model:

- noise Gaussian
- signal Landau 🛞 noise Gaussian
- $\gamma \rightarrow e^+e^- {:}$ Landau with $2{\times}{\rm MPV}$
- $\forall V_{bias}$:

estimate $Q_{tot} = \int_{\Delta t} q(t) \delta t$

• Plot Q_{tot} against V_{bias} . Extract V_{depl} from:

$$Q(V_{depl}) = r \times Q_{max}$$

with r calibrated on post-production CV scans.

Evolution of V_{depl} compared to Hamburg predictions

Elena Graverini (Universität Zürich)

Conclusions & outlook

- The performance of the tracking system is crucial for precision physics
 - $\circ~$ TT boosted trigger capabilities in Run 2
- A procedure was developed to monitor the ageing of the Silicon Tracker with collision data
 - procedure in place since 2011
 - o dedicated data taking runs performed every few months
 - $\circ~$ will continue until the end of Run II, then the detectors will be replaced
- Evolution of V_{depl} closely follows Hamburg model predictions
- Radiation damage is well under control!

Thanks!

Elena Graverini (Universität Zürich)