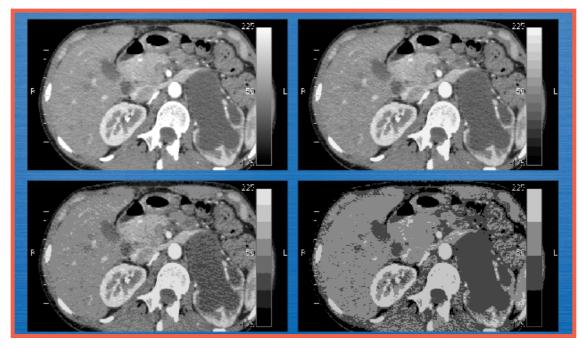


Making the data talk. Loud and clear.

Introduction to Machine Learning and its "business" applications

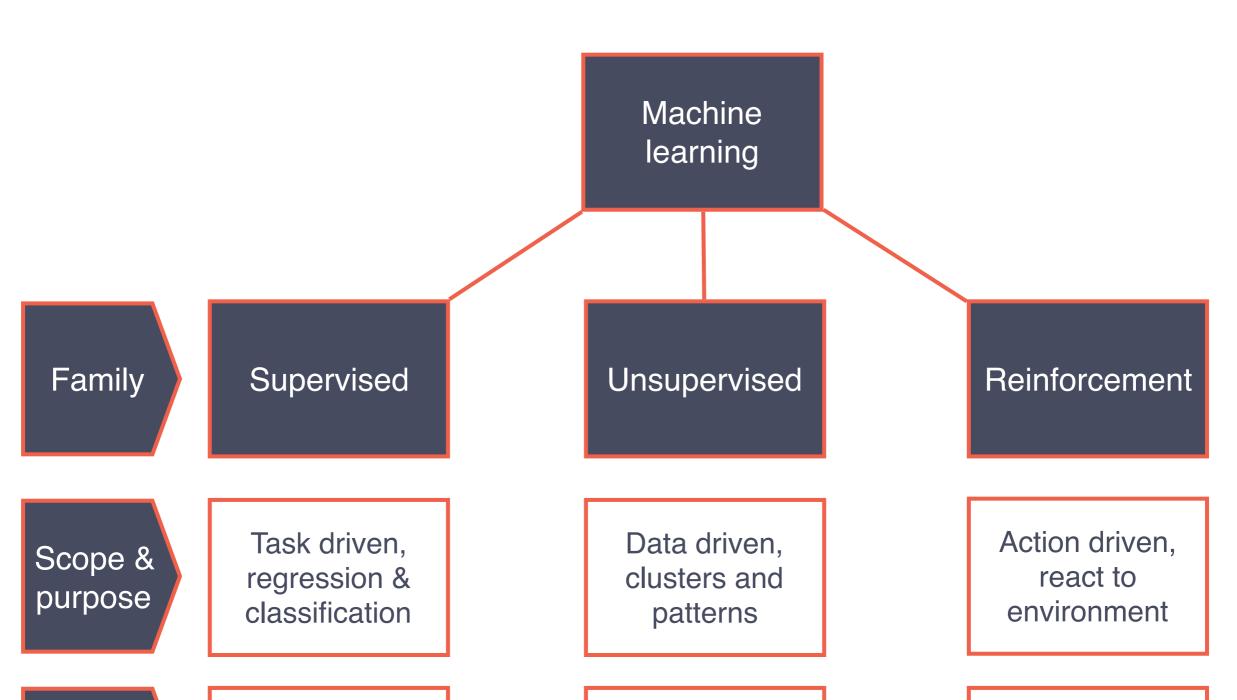
B12 CONSULTING

- Data Analytics/Software Development service firm funded in 2012 by three Physics PhD's
- > Team of over 10 consultants mainly **scientific backgrounds** in quantitive Sciences including Computer Science, Mathematics, Engineering and... Physics!
- > Continuous learning environment focusing on most recent technical and technological advances
- > "Outside the box" approach emphasising custom solution tailored to our Clients exact needs over standardised products
- > Specific **expertise** in:
 - Algorithm development (Python, C++, etc.)
 - Machine learning algorithms (supervised and unsupervised, including Deep Learning)
 - "Big" data processing and visualisation technologies



Machine Learning is... everywhere

THE MACHINE LEARNING ALGORITHM FAMILIES



Applicati ons Facial/voice recognition, targeted marketing

Anomaly detection, recommendation

Autonomous vehicles, gaming, robots & drones

TYPICAL MACHINE LEARNING PROJECT FLOW

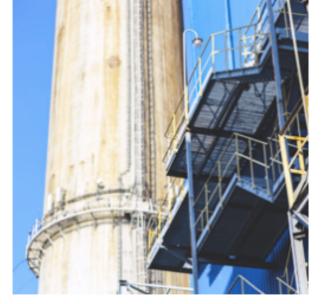
Case investiga-tion

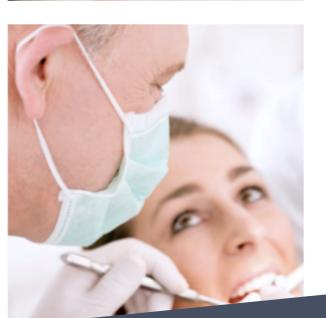
Data sourcing and collection

Data management Quality & enrichments

Modelling & predictions

Prescriptions Deliver valuable insights





CHEMICAL PRODUCTION PROCESS IMPROVEMENT

- > Client: Major player of the chemical industry
- **Business challenge**: Improve the quality of a specific end product with high technological applications
- > Resolution: Quantitative study on real production data pointing out different specific issues and suggesting improvement strategies
- > Technologies: Production process modelling and offline supervised Machine Learning analysis (Decision Trees) in Python starting from static data files
- Outcome: recommendations implemented and project positioned internally as a starting point for a global data valorisation effort

DECISION TREES (1980'S)

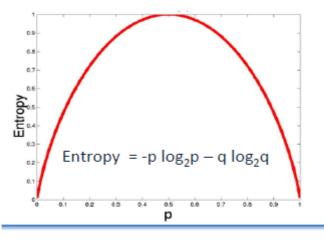
- A decision tree is a flowchart-like structure in which internal node represents a « test » on an attribute, each branch represents the outcome of the test and each leaf node represents a class label
- > Several building algorithms exists, most of them leveraging the notion of information entropy
- > Most popular ones are ID3, C4.5, C5 (R.Quinlan) and CART

ID3 ALGORITHM

- > Information entropy (Shannon, 1948)
 - Average **amount of information** contained in a sample drawn from a distribution or data stream. It characterises our **uncertainty** about our source of information. If entropy decreases after adding information, change is called an **information gain**

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Play Golf		Golf	Entropy(PlayGolf) = Entropy (5,9)
	Yes	No	= Entropy (0.36, 0.64) = - (0.36 log ₂ 0.36) - (0.64 log ₂ 0.64)
	9	5	= 0.94



Entropy =
$$-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$$

$$E(T,X) = \sum_{c \in X} P(c)E(c)$$

		Play		
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

 $\textbf{E}(\mathsf{PlayGolf},\,\mathsf{Outlook}) = \textbf{P}(\mathsf{Sunny})^*\textbf{E}(3,2) + \textbf{P}(\mathsf{Overcast})^*\textbf{E}(4,0) + \textbf{P}(\mathsf{Rainy})^*\textbf{E}(2,3)$

- = (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971
- = 0.693

ID3 ALGORITHM (CTD.)

Choose attribute splitting which highest information gain

		Play Golf				
		Yes	No			
	Sunny	3	2			
Outlook	Overcas	4	0			
	Rainy	2	3			
Gain = 0.247						

		Play Golf			
		Yes	No		
	Hot	2	2		
Temp.	Mild	4	2		
	Cool	3	1		
Gain = 0.029					

		Play Golf			
		Yes	No		
ماناه الماناه	High	3	4		
Humidity	Normal	6	1		
Gain = 0.152					

		Play Golf			
		Yes	No		
Windy	False	6	2		
vvinay	True	3	3		
Gain = 0.048					

Gain(T,X) = Entropy(T) - Entropy(T,X)

$$G(PlayGolf, outlook) = E(PlayGolf) - E(PlayGolf, Outlook)$$

= 0.940 - 0.693 = 0.247

> A branch with entropy of 0 is a leaf node

Temp.	Humidity	Windy	Play Golf
Hot	High	FALSE	Yes
Cool	Normal	TRUE	Yes
Mild	High	TRUE	Yes
Hot	Normal	FALSE	Yes
Hot	High	FALSE	Yes

A branch with entropy more than 0 needs further splitting

Temp.	Humidity	Windy	Play Golf				
Mild	High	FALSE	Yes			Outlook	
Cool	Normal	FALSE	Yes	_			
Mild	Normal	FALSE	Yes				
Cool	Normal	TRUE	No	Sun	nv	Overcast	Rainy
Mild	High	TRUE	No		,		,
				FALSE	TRU	E	
				Play=Yes	Play=	No	

CAR FUEL CONSUMPTION OPTIMISATION

- > Client: Major actor of the automotive industry
- **Business challenge**: Leverage data generated by cars to dynamically decrease fuel consumption
- Resolution: Precise fuel consumption modelling based on actual car data, and optimisation strategy definition and implementation
- Technologies: Supervised (SVR) and unsupervised (k-Mean) Machine Learning techniques in Python, Big Data database technologies
- Outcome: Patentable algorithms included in a prototype product which helped to successfully demonstrate the relevance of the approach

- > Goal: find the hyperplane (i.e. decision boundary) linearly separating classes
- > Basic idea: maximise distance between the two boundaries demarcating the classes

$$\frac{2}{\sqrt{\mathbf{w^T w}}}$$

$$\min_{\mathbf{w}, b} \frac{\mathbf{w^T w}}{2}$$
subject to: $y_i(\mathbf{w}^T \mathbf{x_i} + b) \ge 1 \ (\forall \text{ data points } \mathbf{x_i}).$

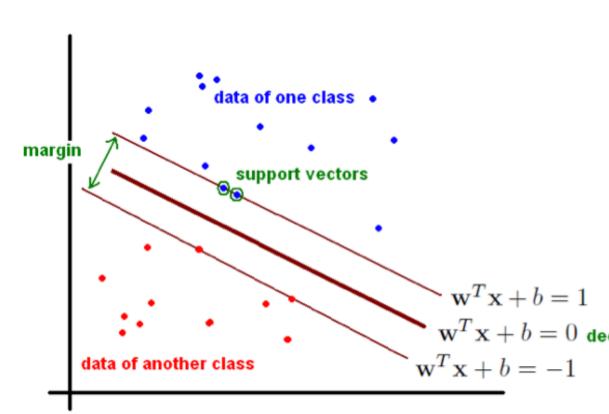
> **Soft margin exception :** allow some data points of one class to appear on the other side of the boundary (slack variables)

$$min_{\mathbf{w},b,\epsilon} \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_i \epsilon_i$$

subject to: $y_i(\mathbf{w}^T \mathbf{x_i} + b) \ge 1 - \epsilon_i$ and $\epsilon_i \ge 0$ (\forall data points $\mathbf{x_i}$).

> Non linear decision boundaries: Data vectors are mapped to higher dimensional (possibly) infinite feature space to make them linearly separable in that space

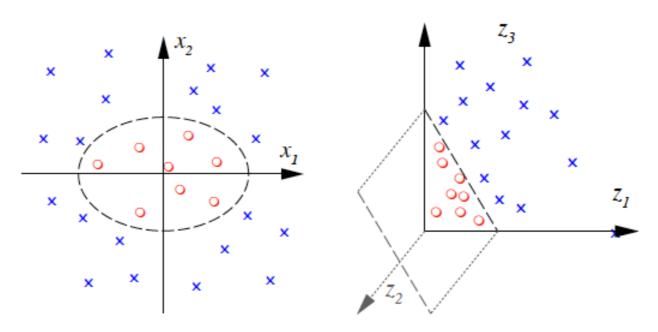
$$\begin{aligned} \min_{\mathbf{w},b,\epsilon} \frac{\mathbf{w}^{\mathrm{T}}\mathbf{w}}{2} + C \sum_{i} \epsilon_{i} \\ &= 1 & \text{subject to: } y_{i}(\mathbf{w}^{T}\phi(\mathbf{x_{i}}) + b) \geq 1 - \epsilon_{i} \text{ and } \epsilon_{i} \geq 0 \text{ (\forall data points $\mathbf{x_{i}}$)}. \\ &0 \text{ decision boundary} \end{aligned}$$



SUPPORT VECTOR MACHINES (CTD.)

$$\Phi: R^2 \to R^3$$

$$(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt(2)x_1x_2, x_2^2)$$



> Kernel trick: solving the above linear optimisation problem implies to be able to quickly compute scalar products such as

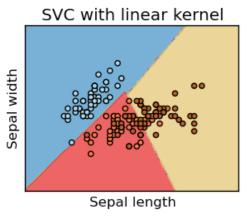
$$\phi(\mathbf{x_i})^T\phi(\mathbf{x_j})$$

this can be intractable in high dimensional spaces, but it turns out that there are special kernel functions that operates on the lower dimensional space to produce an equivalent measure

$$K(\mathbf{x_i}, \mathbf{x_j}) = \phi(\mathbf{x_i})^T \phi(\mathbf{x_j})$$

Sepal width

SUPPORT VECTOR MACHINES (CTD.)



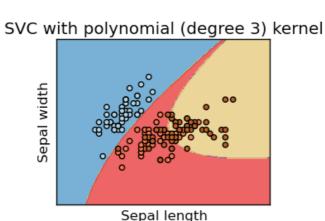
Sepal length

SVC with RBF kernel

Sepal length

LinearSVC (linear kernel)

Sepal length



Gaussian RBF

Polynomial

Sigmoidal

Inverse multi-quadric

$$k(\boldsymbol{x}, \boldsymbol{z}) = \exp\left(\frac{-\|\boldsymbol{x} - \boldsymbol{z}\|^2}{c}\right)$$

$$k(x, z) = ((x^{T}z) + \theta)^{d}$$

$$k(x, z) = \tanh \left(\kappa \left(x^{\top} z\right) + \theta\right)$$

$$k(\boldsymbol{x},\boldsymbol{z}) = \frac{1}{\sqrt{\|\boldsymbol{x} - \boldsymbol{z}\|^2 + c^2}}$$

> SVM can also be used for regression purposes and prediction (Support Vector Regression, or SVR)

ANOMALY DETECTION IN RETAIL DATA

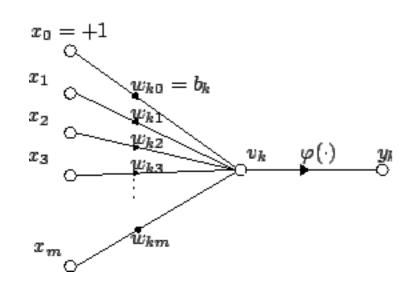
- Client: Mid size player in a local healthcare retail industry
- > Business challenge: Isolate and characterise a large variety of anomalies following unknown patterns in the context of sales data
- > Resolution: Design and implementation a new type of smart algorithm to automatically identify and report anormal recurring patterns
- > **Technologies**: Unsupervised Machine Learning techniques in Python (autoencoders), large data files advanced manipulation technologies and connectors to business data infrastructure
- Outcome: Relevance of the approach proven by detecting specific anomalies in real data. Ongoing solution productisation effort

ARTIFICIAL NEURAL NETWORKS

- Computational models inspired by an animal's central nervous systems (in particular the brain)
- > Systems of interconnected "neurones" which can compute values from inputs
- > Two defining properties:
 - consist of sets of adaptive weights, i.e. numerical parameters that are tuned by a learning algorithm
 - capable of approximating non-linear functions of their inputs
- > Frequently use(d) for pattern recognition, e.g., computer vision
- Used for supervised learning (categorisation and regression), unsupervised learning (e.g., autoencoders for anomaly detection) and reinforced learning

THE PERCEPTRON ALGORITHM (1958)

System of interconnected neurones that compute values from inputs by feeding information through the network



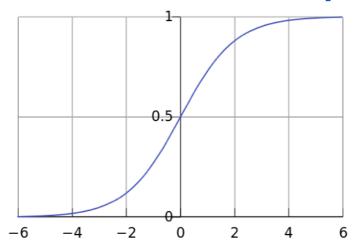
Basic structure of an artificial neurone:

One or more inputs are received and summed up (weighted) passing through a transfer function to produce the output

Neuron output

$$y_k = \varphi\left(\sum_{j=0}^m w_{kj} \, x_j\right)$$

Transfer function φ



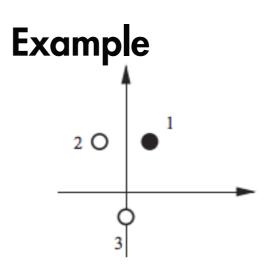
THE PERCEPTRON ALGORITHM (CTD.)

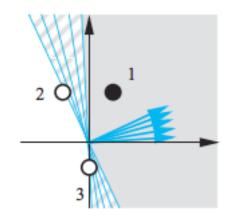
The perceptron algorithm

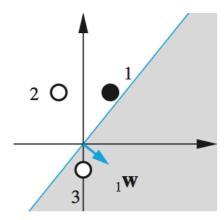
> Binary classifier that maps inputs x to one of possible output values f(x), e.g., true or false

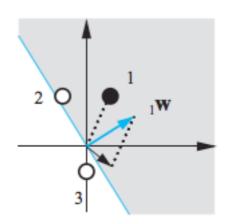
Training

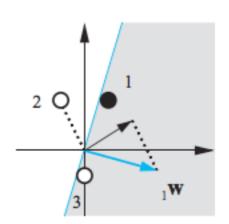
- > For each point in training set:
 - calculate actual output and
 - update the weights

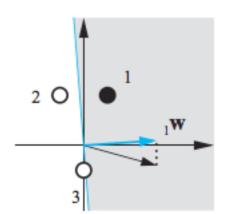






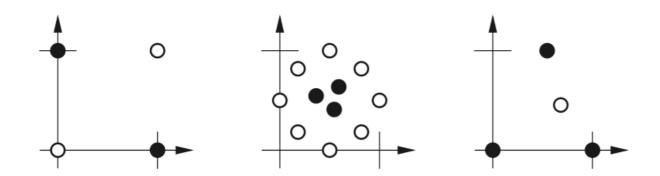




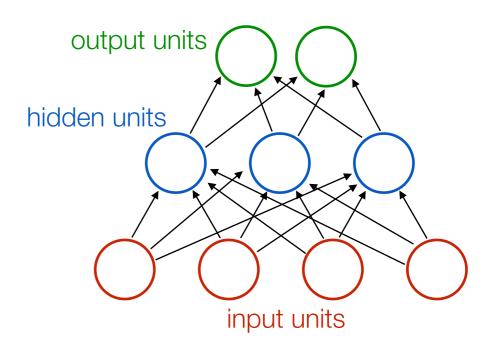


BEYOND THE PERCEPTRON

Perceptron problem: linearly inseparable (related to the so-called Vapnik–Chervonenkis dimension)



Solution: multilayer perceptrons (units)



When hidden layers exist, perceptron algorithm cannot be applied.

Back propagation algorithm is one possible solution:

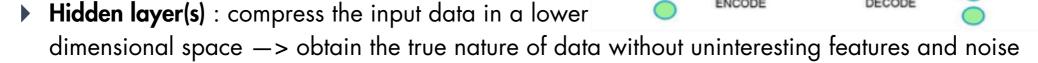
Modify the weights of the connections leading to the hidden units based on the strength of each unit's contribution to the final prediction... But original attempts had a lot of issues.

Recent breakthrough (Deep Learning) thanks to the explosion of available computer ressources (data, calculation)

AUTOENCODERS

A particular type of n.n.:

- Structure of a n.n. with autoencoder:
 - Input data (features)



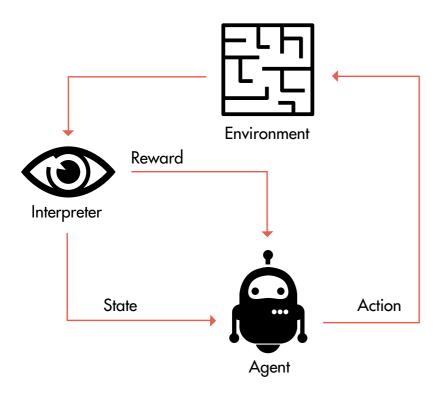
- ▶ Output nodes : from the hidden layer(s) reconstruct the original space
- > In simple words, the autoencoder learns the pattern of the data by learning an identity function h(x)≈x in the training process

How to detect anomalies with autoencoders:

- > Train the autoencoder on data with no anomalies
- > The training process outputs a MSE = $\frac{1}{2n}\Sigma_i||t_i-o_i||^2$ as indicator of the difference between the original data and its low-dimensional reconstruction
- Apply the auto encoder to the test dataset
- Each row of the output for the test dataset comes out with a reconstruction error, to be compared with the MSE coming the training
- > Rows with high reconstruction error w.r.t. MSE coming from the training are likely to be outliers

REINFORCED LEARNING

Working principle



Technologies:

- TensorFlow (Deep Learning by Google)
- Keras: high-level Deep Learning API for Python
- Keras RL: RL implementation on Keras

> Advantages :

- > Extend ML to decision making, beyond insights
- Agent can handle very different environmental situation and start extrapolating results
- Lot of flexibility to favour one behaviour over another (reward function)

Disadvantages :

- Requires a lot of training to converge (i.e., CPU time)!
- Reward function definition is critical and highly impacts results
- > The entire approach relies on the possibility to accurately model environment, possible agent actions and state changes

KEY TAKEAWAYS

- Machine Learning is an increasingly popular approach to solve concrete "real world" issues
- It relies on the presence of valuable datasets, but also on a large variety of (old and new) algorithms and technologies to learn from this data, and the skills and knowledge required to use them efficiently
- A lot has been happening recently, thanks to both significant theoretical advances and improve in computer power (parallelisation), in particular "reinforced learning" is a promising new area.
- > But a lot also remains to be done: stay tuned!

