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I Introduction
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Before 2010:

Proton-proton scattering:
elementary, understood in terms of pQCD

Heavy ion collisions:

Collective effects, formation of a (flowing)

quark-gluon-plasma, macroscopic description

Since 2010: Incredibly interesting and unex-

pected pp and pPb results at the LHC (collective

effect also in pp?)
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Collective effects means

� Primary interactions at t = 0

� Secondary interactions
formation of “matter” which expands

collectively, like a fluid

In the following:

An example of a EPOS simulation of expanding

matter in pp scattering
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Radial flow visible in particle distributions

Particle spectra affected by radial flow
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pPb at 5TeV CMS, arXiv:1307.3442

Strong variation of shape with multiplicity

for kaon and even more for proton pt spectra

(flow like)
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Λ/Ks versus pT (high compared to low multiplicity)

in pPb (left) similar to PbPb (right)

ALICE (2013) arXiv:1307.6796
ALICE (2013) arXiv:1307.5530

Phys. Rev. Lett. 111, 222301 (2013)

In AA: partially due to flow
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Ridges & flow harmonics

Ridges appear in

R =
1
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Initial “elliptical”

matter distribution:

Preferred expansion

along φ = 0
and φ = π

ηs-invariance

same form at any ηs
ηs =

1
2 ln

t+z
t−z

φ
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Particle

distribution:

Preferred

directions

φ = 0 and φ = π

∝ 1 + 2v2 cos(2φ)
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Dihadrons:

preferred ∆φ = 0 and ∆φ = π (even for big ∆η)
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Initial “triangular”

matter distribu-

tion:

Preferred expansion

along φ = 0, φ = 2
3π,

and φ = 4
3π

ηs-invariance

φ
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Particle

distribution:

Preferred

directions

φ = 0, φ = 2
3
π,

and φ = 4
3π

∝ 1 + 2v3 cos(3φ)
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3π, and ∆φ = 4

3π
(even for large ∆η)
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In general, superposition of several eccentricities εn,

εne
inψPP

n = −
∫
dxdy r2einφe(x, y)
∫
dxdy r2e(x, y)

Particle distribution characterized by harmonic flow

coefficients

vne
inψEP

n =

∫

dφ einφf(φ)
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At φ = 0: Here, v2 and v3 non-zero

The ridge ∝ 1 + 2v2 cos(2φ) + 2v3 cos(3φ)

(extended in η)

Awayside peak

may originate

from jets, not

the ridge (for

large ∆η)
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CMS: Ridges (in dihadron correlation functions)

also seen in pp (left) and pPb (right)

CMS (2010) arXiv:1009.4122

JHEP 1009:091,2010
CMS (2012) arXiv:1210.5482

Phys. Lett. B 718 (2013) 795

Looks like flow !



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 31

Flow harmonics, identified particles

Flow shifts par-

ticles to higher

pt

Effect increases

wth mass

Also true for v2
vs pt

pt

v2 increasing mass
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ALICE: v2 versus pT: mass splitting (π, K, p)
in pPb (left) similar to PbPb (right)

ALICE (2013) arXiv:1307.3237 ALICE (2012) F. Noferini QM2012

Typical flow result!
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So : “Flow-like phenomena” are also seen

in pp and pA, therefore:

Heavy ion approach

= primary scattering
+ subsequent fluid evolution

becomes interesting for pp and pA



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 34

II Theoretical concepts

concerning primary interactions

providing initial conditions
for secondary interactions
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Poles and branch cuts

Even functions f(x) of a real variable x

may need to be continued into the complex plane,

to understand their properties.

Example f(x) =

∞∑

n=0

anx
n =

∞∑

n=0

( x

2i

)n

.

The radius of convergence is

ρ = lim
n→∞

|an|−1/n = 2
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Which is obvious, since

f considered as function

of a complex variable z,

writes

f(z) =
1

1− z/(2i)

having a pole at z = 2i,

Im z

Re z1

1

Blue area: convergence

whereas f(x) has no singularity (for x ∈ IR)
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Branch cuts

An example: The logarithm.

The exponential function defines a mapping M

M :
C → C

w → z = exp(w)

which is well defined in the whole complex plane.
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Consider w = x+ iy, with x

fixed and y going from −π
to π.

(Trajectory γ going from
w1 = x− iπ to w2 = x+ iπ)

x = Re w

w

w

2

1

y = Im w
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The mapped trajectory γ ′ =M(γ) is given as

z = exp(w) = exp(x) exp(iy)

=> A circle with start and end point z1 = z2 = −ex

x = Re w

w

w

2

1

y = Im w

z  = 1 z2

Im z

Re z
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Doing the inverse mapping

M−1 : z → w = log(z),

we get for z1 = z2 two different values w1 and w2 !!

One has to define log in C − R≤0 (branch).

The negative real axis is called branch cut.
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Im z

Re z

z 2
z 1

x = Re w

w

w

2

1

y = Im w

The discontinuity at z = −ex:

log(z + iǫ)− log(z − iǫ) = 2πi
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Cut diagrams

The scattering operator Ŝ is defined via

|ψ(t = +∞〉 = Ŝ |ψ(t = −∞〉

Unitarity relation Ŝ†Ŝ = 1 gives

1 = 〈i| Ŝ†Ŝ |i〉
=
∑

f

〈i| Ŝ† |f〉 〈f | Ŝ |i〉

=
∑

f

〈f | Ŝ |i〉∗ 〈f | Ŝ |i〉
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Expressed in terms of the S-matrix:

1 =
∑

f

S∗
fiSfi

Using Sfi=δfi + i(2π)4δ(pf − pi)Tfi

dividing by i(2π)4δ(0) :

1

i
(Tii − T ∗

ii) =
∑

f

(2π)4δ(pf − pi) |Tfi|2

= 2w σtot

= 2sσtot
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The l.h.s. :

1

i
(Tii − T ∗

ii) = 2ImT

So we get the optical theorem

2ImTii =
∑

f

(2π)4δ(pf − pi) |Tfi|2 = 2s σtot
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Assume:

� Tii is Lorentz invariant → use s, t

� Tii(s, t) is an analytic function of s, with s consid-
ered as a complex variable
(Hermitean analyticity)

� Tii(s, t) is real on some part of the real axis

Using the Schwarz reflection principle, Tii(s, t) first

defined for Ims ≥ 0 can be continued in a unique

fashion via Tii(s
∗, t) = Tii(s, t)

∗.
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So:

1

i
(Tii(s, t)− Tii(s, t)

∗) =
1

i
(Tii(s, t)− Tii(s

∗, t))

Def:

discT = Tii(s+ iǫ, t)− Tii(s− iǫ, t)
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We have finally

1

i
discT = (2π)4δ(pf − pi)

∑

f

|Tfi|2 = 2s σtot

Interpretation: 1
i discT can be seen as a so-called “cut

diagram”, with modified Feynman rules, the “inter-

mediate particles” are on mass shell.
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Modified Feynman rules :

� Draw a dashed line from top to bottom

� Use “normal” Feynman rules to the left

� Use the complex conjugate expressions to the right

� For lines crossing the cut: Replace propagators
by mass shell conditions 2πθ(p0)δ(p2 −m2)
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Cutting a diagram representing elastic scattering

corresponds to inelastic scattering

2

=  
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Cutting diagrams is useful in case of substructures:

=

Precisely the multiple scattering structure
in EPOS
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= +

++ + ...

Cut diagram
= sum of products of cut/uncut subdiagrams
=> Gribov-Regge approach of multiple scattering
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Parton evolution

A fast moving proton

t

z

proton

cloud 
of gluons

emits successively

partons (mainly

gluons), quasi-

real (large gamma

factors)
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... which can be probed by a virtual photon

(emitted from an electron)

t

z

proton photon

kp
qbar

q

color
dipole

photon splits

into q-qbar

→Color dipole

p and k are
proton and
photon mo-
mentum
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What precisely the photon “sees” depends on two

kinematic variables,

the virtuality

Q2 = −k2

and the Bjorken variable

x =
Q2

2pk

which probes partons with momentum fraction x.

It determines also the approximation scheme to com-

pute the parton cloud.
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s
−λQ = x

ln Q2

ln 1/x

s
o
ft

BFKL

saturation

DGLAP

DGLAP: sum-

ming to all or-

ders of αs lnQ
2

BFKL: sum-

ming to all or-

ders of αs ln
1
x

Linear

equations
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BFKL (Balitsky, Fadin, Kuraev, and Lipatov):

∂ϕ(x, q)

∂ ln 1
x

αsNc

π2

∫

d2k K(q,k)ϕ(x,k)

with xg(x,Q2) =

∫ Q2

0

d2k

k2
ϕ(x,k),

DGLAP (Dokshitzer, Gribov, Lipatov,

Altarelli and Parisi):

∂g(x,Q2)

∂ ln q2
=

∫ 1

x

dz

z

αs
2π
P (z)g(

x

z
,Q2)
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Very large ln 1/x : Saturation domain

t

z

proton

Non-linear

effects

Gluon from

one cascade

is absorbed

by another

one
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pp scattering (linear domain)

proton proton

Same evolution as in proton-photon (causality)
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Different way of plotting the same reaction

nucleon

nucleon
t=0

time

log(x /x )0.5 + −

inelastic scattering diagram



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 60

Corresponding cut diagram

referred to as “cut parton ladder”

= amplitude squared of the inelastic diagram
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Corresponding elastic diagram

referred to as “(uncut) parton ladder”
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Soft domain

Very small lnQ2: No perturbative treatment!

But one may use again the hypothesis of Lorentz

invariance and analyticity of the T-matrix. One

starts with a partial wave expansion of the T-matrix

(Watson-Sommerfeld transform) :

T (t, s) =
∞∑

j=0

(2j + 1)T (j, s)Pj(z)

with t ∝ z − 1, z = cosϑ, Pj: Legendre polynomials.
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With α(s) being the right-

most pole of T (j, s) one

gets for t→ ∞:

T (t, s) ∝ tα(s)

Im j

Re j

α (s)

and assuming crossing symmetry one gets the fa-

mous asymptotic result

T (s, t) ∝ sα(t)

with the “Regge pole”

α(t) = α(0) + α′t
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Perturbative:

Parton ladder

T-matrix computed
(DGLAP)

Soft:

Soft Pomeron

gluons fields

T-matrix parametrized
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Formulas (see Phys.Rept. 350 (2001) 93-289):

Tsoft(ŝ, t) = 8πs0 i γ
2
Pom−parton

(
ŝ

s0

)αsoft(0)

× exp(λsoft t) ,

with

λsoft= 2R2
Pom−parton + α′

soft ln
ŝ

s0
.
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Cut soft Pomeron (Schwarz reflection principle):

1

i
discTsoft(ŝ, t)

=
1

i
[Tsoft(ŝ + i0, t)− Tsoft(ŝ− i0, t)]

= 2ImTsoft(ŝ, t)
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Interaction cross section,

σsoft(ŝ) =
1

2ŝ
2ImTsoft(ŝ, 0) ,

= 8πγ2part

(
ŝ

s0

)αsoft(0)−1

,

using the optical theorem (with t = 0),

which grows faster than data
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Semihard Pomeron

soft

soft

parton
ladder
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Space-time picture of semihard Pomeron

soft preevolution

cascade
parton

proton proton
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Hard cross section and amplitude (see Phys.Rept. 350 (2001)

93-289) :

σjkhard(ŝ, Q
2
0) =

1

2ŝ
2ImT jkhard(ŝ, t = 0)

= K
∑

ml

∫

dx+Bdx
−
Bdp

2
⊥
dσmlBorn

dp2⊥
(x+Bx

−
Bŝ, p

2
⊥)

×Ejm
QCD(x

+
B, Q

2
0,M

2
F )E

kl
QCD(x

−
B, Q

2
0,M

2
F )θ
(
M2

F −Q2
0

)
,

One knows (Lipativ, 86): amplitude is imaginary, and

nearly independent on t => (with R2
hard ≃ 0) :

T jkhard(ŝ, t) = iŝ σjkhard(ŝ, Q
2
0) exp

(
R2

hard t
)
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Semihard amplitude :

iTsemihard(ŝ, t) =
∑

jk

∫ 1

0

dz+

z+
dz−

z−

×Im T jsoft

( s0
z+
, t
)

ImT ksoft

( s0
z−
, t
)

iT jkhard(z
+z−ŝ, t)

(valid for s → ∞ and small parton virtualities except

for the ones in the ladder)
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Cross sections

(a) Exclusive : a + b → c + d

(b) Total : a+b → X (sum of (a) )

(c) Inclusive : a + b → c + X (weighted sum of (a) )

There are simple formulas for inclusive cross sec-

tions (AGK cancellations), but one needs to go be-

yond when studying high multiplicity pp.
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Consider multiple scattering amplitude

iT =
∏

iTP

cross section: sum over all cuts.

For each cut Pom:

1

i
discTP = 2ImTP ≡ G

For each uncut one:

iTP + {iTP}∗ = i (i ImTP) + {i (i ImTP)}∗ = −2ImTP ≡ −G
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Inclusive cross section: weighted sum over all cuts:

The multiplicity for k cut Pomerons is kN , if N is the

multiplicity per cut Pomeron.

Contribution to the inclusive cross section for n

Pomerons:

σ
(n)
incl ∝

n∑

k=0

kN Gk (−G)n−k
(
n
k

)

= 0 for n > 1

Only n=1 contributes (single Pomeron) !!

AGK cancellations for n>1



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 75

simple diagram even in case of multiple scatter-

ing

corresponds to factorization:

σincl = F ⊗ σelem ⊗ F
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Kind of obvious that factorization should hold for

inclusive cross sections, so

σincl = F ⊗ σelem ⊗ F

may be used as starting point, with F taken from DIS
(photon-proton).
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III Model overview

with contributions from T. Pierog, S. Ostapchenko, C. Bierlich,
F. Riehn, P. Tribedy, A. Fedynitch



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 78

Models for min bias and high multiplicity pp

model Gribov Dipole Facto used authors
Regge risation for CR

QGSJETII X I X Ostapchenko

EPOSLHC X I X Pierog, Werner

EPOS3 X I Werner, Pierog

DIPSY IX Lönnblad, Bierlich

IP-Glasma IX Tribedy, Schenke

SIBYLL IX X Engel, Riehn

DPMJETIII IX X Engel, Fedynitch

PYTHIA IX Sjostrand, Skands

HERWIG IX Marchesini, Webber
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Models for high multipl pp, pA, AA

including collective effects

ohttp://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions/
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model primary secondary
scatterings interactions

EPOS Gribov Regge viscous hadronic
hydrodynamical cascade

expansion of QGP

IP-Glasma Dipole model “

Supersonic Wounded “ “
nucleon model

AMPT Minijets partonic cascade “
from Pythia

Cascade means:

Successive scatterings a + b → c + d according to known cross
sections
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Gribov-Regge multiple scattering approach

EPOS, QGSJETII

pQCD  

soft

soft

pQCD  

nucleon

nucleon

more details later

S-Matrix based
on Pomerons

Pomerons :
Parton ladders (initial
and final state radia-
tion, DGLAP) + soft

Cutting rules to get
inelastic cross sec-
tions.

Same principle for pp,
pA, AA
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Nonlinear effects in QGSJET

Pomeron-Pomeron coupling

+ ...= +

� Summing of all orders

� No energy conservation

� (in EPOS full energy conservation, but effective treatment of nonlinear
effects)
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Nonlinear effects in EPOS

Nonlinear effects (gluon fusion) taken care of via a saturation
scale Qs

Saturation scale depends on
Pomeron energy (

√
x+x−s) and

the environment

Selfconsistent procedure within
multiple scattering framework
(more later)

ladder partons

nucleons
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Dipole approach

Initial state radiation in DIPSY (from Christian Bierlich)

Initial nucleon: Three dipoles

LL BFKL in b-space + corrections: A dipole (~x, ~y) can emit a gluon at po-
sition ~z with probability (P ) per unit rapidity (Y )

dP

dY
=

ᾱ

2π
d2~z

(~x− ~y)2

(~x− ~z)2(~z − ~y)2
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Multiple scattering

Multiple color exchange
between dipoles i and j
with probabilities

α2
s

4

[

log

(
(~xi − ~yj)

2(~yi − ~xj)
2

(~xi − ~xj)2(~yi − ~yj)2

)]2

-> kinky strings

� Two “leading“ strings

� Additional strings
from loops

� No Remnants

Many strings:
Lund strings may overlap

=> color ropes
(Larger eff. string tension)



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 86

Initial state in IP-Glasma (from Prithwish Tribedy)

IP-Sat dipole model (r⊥ =dipole size):

dσ

d2b
= 2 [1− exp (−F (r⊥, x, b)] , F ∝ r2⊥αs(µ

2)xg(x, µ2)T (b)

T (b) : Gaussian profile, µ2 = 4/r2⊥ + µ2
0, xg : DGLAP evolution

Saturation scale Qs defined via

F
(

r⊥, x =
2

Q2
s

, b
)

=
1

2

IP-Glasma: Color charge squared for projectile A and target B :

g2µ2
A =

∑

nucleons g
2µ2

i , with g2µ2
i ∝ Q2

s with Q2
s from IP-Sat model.
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Multiple Scattering

Color charge density ρA/B

generated from Gaussian
distribution with variance
g2µ2

A (contains DGLAP, satura-

tion)

Current
Jν = δν±ρA/B(x

∓, x⊥)

Field from [Dµ, Fµν] = Jν

Numerical (lattice) solution,
fields can be expressed in
terms of initial ones:
Ai = Ai

A + Ai
B, Aη = ig

2
[Ai

A, A
i
B]

Initial configuration

JIMWLK evolution

Single gluon
emission

A (classical field)

Multiple scattering:
Nonlinearity in terms of A:
Infinite number of g + g → g
processes

Fields→Gluons→Pythia strings



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 88

Models based on factorization

σjet =

∫

dx1dx2

∫

dp2t
∑

fi(x1, p
2
t ) fj(x2, p

2
t )
dσij
dp2t

(ŝ, t̂) (A)

nucleon

nucleon

σ

f

f PYTHIA

HERWIG

SIBYLL

DPMJETIII

First step: σjet according to (A)

Second step: Multiple scattering scheme via eikonal formula

prob(n) =
[σjet(s) T (s, b)]

n

n!
exp (−σjet(s) T (s, b))
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Multiple scattering

in SIBYLL
From F. Riehn

Multiple scattering via
eikonal model with soft
and hard component

� No Remnants

� Main scattering
=> qq-q strings

� Further scatterings
=> strings between

gluon pairs

nucleon

nucleon

Saturation scale from

αsNc
Q2 × 1

N2
c−1

xG
πR2 = 1
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Multiple

scattering

in Pythia

arXiv:1101.2599

Color
reconnections
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IV Multiple scattering in EPOS

in collaboration with T. Pierog, S. Ostapchenko,
B. Guiot, G. Sophys, , M. Stefaniak

Parton based Gribov-Regge theory. By H.J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K.

Werner. hep-ph/0007198. Published in Phys.Rept. 350 (2001) 93-289.
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Single scattering
(single Pomeron)

soft

soft

parton
ladder

� Parton emission starts
long before the actual in-
teraction (partons are very
long-lived due to a large γ).

� Soft pre-evolution

� Subsequent parton emis-
sions towards smaller x-
values and larger virtuali-
ties (from both sides).

� The final partons from
either nucleon interact
(“hard” collision).
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Multiple scattering

Be T the elastic (pp,pA,AA) scattering T-matrix =>

2s σtot =
1

i
discT

Basic assumption : Multiple “Pomerons”

iT =
∑

k

1

k!
{iTPom × ... × iTPom}
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Example: 2 “Pomerons”
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Evaluate

1

i
disc {iTPom × ... × iTPom}

using “cutting rules” :

A “cut” multi-Pomeron diagram

amounts to the sum of all possible cuts
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Example of two Pomerons

+

++
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Using “Pomeron = parton ladder + soft”, we have (first

diagram)

= remnant

nucleon

nucleon
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Using a simplified notation

for “cut” and “uncut” Pomeron

one gets ...
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Complete result
(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

For pp, pA, AA:

σtot =
∑

cutP

∫
∑

uncutP

∫

A

B

uncut

−G

cut

G

︸ ︷︷ ︸

dσexclusive

Dotted lines : Cut Pomerons (parton ladders)
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σtot =

∫

d2b

∫ A∏

i=1

d2bAi dz
A
i ρA(

√

(bAi )
2 + (zAi )

2)

B∏

j=1

d2bBj dz
B
j ρB(

√

(bBj )
2 + (zBj )2)

∑

m1l1

. . .
∑

mABlAB

(1− δ0Σmk
)

∫ AB∏

k=1

( mk∏

µ=1

dx+k,µdx
−

k,µ

lk∏

λ=1

dx̃+k,λdx̃
−

k,λ

){

AB∏

k=1

(
1

mk!

1

lk!

mk∏

µ=1

G(x+k,µ, x
−

k,µ, s, |~b+~bAπ(k) −~bBτ(k)|)

lk∏

λ=1

−G(x̃+k,λ, x̃−k,λ, s, |~b+~bAπ(k) −~bBτ(k)|)
)

A∏

i=1

(

1−
∑

π(k)=i

x+k,µ, −
∑

π(k)=i

x̃+k,λ

)α B∏

j=1

(

1−
∑

τ(k)=j

x−k,µ −
∑

τ(k)=j

x̃−k,λ

)α
}



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes102

� Complicated with energy sharing
included

(10,000,000-dimensional intergrals)

� but doable

– Parameterizations for G(x+, x−, s, b)

– Analytical integrations

– Employing Markov chain techniques
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Step 1:

� We compute partial cross sections σK for partic-

ular configurations K via analytical integration

� K is a multi-dimensional variable
for example for double scattering in pp with two Pomerons
involved: K =

{
x+1 , x

−
1 , ~pt1, x

+
2 , x

−
2 , ~pt2

}

� Configurations K in AA scattering may be quite

complex
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Step 2:

The partial cross sections σK can be

� interpreted as probability distributions,

� enabling us to use Monte Carlo techniques to

generate configurations K.
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Since we are dealing with multidimensional proba-

bility distributions, we have to employ very sophisti-

cated

Markov chain techniques

to generate configurations according to Ω.
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Configurations via Markov chains
(the heart of EPOS, see Phys. Rept. 350, 2001)

Consider a sequence of multidimensional random

numbers

x1 , x2 , x3, ...

with ft being the law for xt.

A homogeneous Markov chain is defined as

ft(x) =
∑

x′

ft−1(x
′)p(x′ → x).

with p(x′ → x) being the transition probability (or ma-

trix). Normalization :
∑

x p(x
′ → x) = 1.
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Let f be the law for xt. The law for xt+1 is
∑

a

f(a) p(a→ b) .

One defines an operator T (comme Translation)

Tf(b) =
∑

a

f(a) p(a→ b) .

So Tf is the law for xt+1 when f is the law for xt.
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A law is called stationary if Tf = f .

Theorem: If a stationary law Tf = f exists, then T kf1
converges towards f (which is unique) for any f1.

So to generate (multidimensional) random numbers accord-

ing to some (given) law f ,

� one constructs a T such that Tf = f

� and then iterates T kf1
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One needs, for a given law f ,

to find a transition matrix p such that Tf = f

Sufficient condition (detailed balance):

f(a) p(a→ b) = f(b) p(b→ a) ,

Proof : Tf(b) =
∑

a

f(a) p(a→ b)

=
∑

a

f(b) p(b→ a)

= f(b)
∑

a

p(b→ a)

= f(b) .
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Metropolis alorithm

Definitions:
pab = p(a→ b) ,

fa = f(a) .

Take

pab = wab uab . (a 6= b) .

with
wab : proposal matrix (

∑

bwab = 1)

uab : acceptance matrix (uab ≤ 1)

This is NOT the simple acceptance-rejection method!!
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Detailed balance:

fa pab = fb pba

amounts to

fawab uab = fbwba uba ,

or
uab
uba

=
fb
fa

wba
wab

.
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uab
uba

=
fb
fa

wba
wab

.

is solved by

uab = F

(
fb
fa

wba
wab

)

,

with a function F with

F (z)

F (1z)
= z .

Proof : With z ≡ fb
fa

wba

wab

one finds :
uab
uba

=
F (z)

F (1
z
)
= z =

fb
fa

wba

wab

.
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The F according to Metropolis is

F (z) = min(z, 1) .

One finds indeed

F (z)

F (1
z
)
=

min(z, 1)

min(1
z
, 1)

=

{
z/1 pour z ≤ 1

1/1z pour z > 1

}

= z .

So one proposes for each iteration a new configuation

b according to some wab, and accepts it with probabil-

ity

uab = min

(
fb
fa

wba
wab

, 1

)

.
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Configuration lattice, define wab such that b changes
w.r.t. a only on one lattice site (like Ising model
Metropolis)

1
2
3
...

AB

1 2 3 ...
interaction

NN
pair

mmax

Long iterations, but allows to generate very complex
configurations according to very complex laws.
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Particle production

Generating “configurations” is only half the story:

How do we obtain the corresponding par-

tons which “make” the ladder, and finally

the hadrons?

(for a given ladder, given momenta and flavors at the

endpoints)
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For particle production, only the cut Pomerons
plays a role

A

B

uncut

−G

cut

G

the uncut ones have been summed over
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parton
ladder

soft

soft Reminder: in order to
compute the contribution
of a cut Pomeron to a par-
tial cross section, we sum
over emitted partons, inte-
grate over all momenta.

Consistency requires to use these same for-

mulas to obtain probability distributions for

the parton emissions (what we do).
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Realization: big tables with pre-calculated cross sections, to be used via
interpolation to generate partons according to iterative equations.

σij
hard(ŝ, Q

2
1, Q

2
2) =

∑

k

∫
dQ2

Q2

∫

dξ∆i(Q2
1, Q

2)
αs

2π
P k
i (ξ)σ

kj
hard(ξŝ, Q

2, Q2
2)

+ σji
ord(ŝ, Q

2
2, Q

2
1)

σij
ord(ŝ, Q

2
1, Q

2
2) =

∑

k

∫
dQ2

Q2

∫

dξ∆i(Q2
1, Q

2)
αs

2π
P k
i (ξ)σ

kj
ord(ξŝ, Q

2, Q2
2)

+ σij
Born(ŝ, Q

2
1, Q

2
2)

σij
Born(ŝ, Q

2
1, Q

2
2) = K

∫

dp2⊥
dσij

Born

dp2
⊥

(ŝ, p2⊥)

× ∆i(Q2
1,M

2
F)∆

j(Q2
2,M

2
F)Θ

(
M2

F −max
[
Q2

1, Q
2
2

])
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= =

Probability of single emission:

prob(ξ, Q2) =
dQ2

Q2
∆i(Q2

1, Q
2)
αs
2π

P k
i (ξ) σ

kj
hard(ξŝ, Q

2, Q2
2)
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From partons to strings:

For t > 0, a (cut) Pomeron rep-

resents actually a (mainly)

longitudinal color field,

where the ladder rungs (gluons)
represent small transverse mo-
mentum components(1).

field

electric

tudinal

longi

=
 c

ol
or

 s
tr

in
g

——————————————————————————
(1) Lund model idea, first e+e-,

then generalized to pp, see also CGC
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Realization:

One-dimensional character of the fields

=> classical string theory
(which does not use much more than some general symmetries)

� Mapping: parton ladders -> kinky strings
(parton momentum = kink)

� Classical string evolution + decay via area law
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String:

two-

dimensional

surface

x(σ, τ)

in

Minkowski

space
Break probability :

dP = pB dA,
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In detail: The string surface is given as

xµ(σ, τ) = x0 +
1

2

∫ σ+τ

σ−τ
gµ(ξ)dξ,

so it is completely given in terms of some function

gµ(ξ) with

gµ(σ) = ẋµ(σ, τ = 0).
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We consider only strings with a piecewise constant

initial velocity g, which are called kinky strings.

� This string is characterized by a sequence of

σ intervals [σk, σk+1], and the corresponding

constant values (say vk) of g in these intervals.

Such an interval with the corresponding constant

value of g is referred to as “kink”.
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A parton ladder represents a sequence of partons of

the type q − g...− g − q̄, with soft “end partons” q and

q̄, and hard inner gluons g.

The mapping “partons →string” is done such that we

identify a parton sequence with a kinky string

by requiring “parton = kink”,

with σk+1 − σk = energy of parton k

and vk = momentum of parton k /Ek.
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What is really done (PR 232, pp 87-299, 1993, PR 350, pp 93-289, 2001):

A string represents a two-dimensional surface in Minkowski space

x = x(σ, τ),

with σ being a space-like and τ a time-like parameter.

In order to obtain the equations of motion, we need a Lagrangian. It is
obtained by demanding the invariance of the action with respect to gauge
transformations. This way one finds the Lagrangian of Nambu-Goto:

L = −κ
√

(x′ẋ)2 − x′2ẋ2,

with “dot” and “prime” referring to the partial derivatives with respect to σ
and τ , and with κ being the string tension.
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With this Lagrangian we get the Euler-Lagrange equations of motion:

∂

∂τ

∂L

∂ẋµ
+

∂

∂σ

∂L

∂x′µ
= 0.

We use the gauge fixing

x′2 + ẋ2 = 0 and x′ẋ = 0,

which provides a very simple equation of motion, namely a wave equation,

∂2xµ
∂τ2

− ∂2xµ
∂σ2

= 0,

with the boundary conditions:

∂xµ/∂σ = 0, σ = 0, π.
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The solution of the equation of motion (with initial extension zero) is

xµ(σ, τ) = x0 +
1

2

(∫ σ+τ

σ−τ

gµ(ξ)dξ

)

,

where g is the initial velocity, g(σ) = ẋ(σ, τ)τ=0 .

Strings are classified according to the function g. Strings with piecewise
constant g are called kinky strings, each segment being called kink, finally
identified with perturbative partons.

In the following figure, we show the evolution of a string generated in electron-
positron annihilation (4 internal kinks).
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Hadron production

is finally realized via string breaking, such that string

fragments are identified with hadrons.

Hypothesis: the string breaks within an infinites-

imal area dA on its surface with a probability which

is proportional to this area,

dP = pB dA,

where pB is the fundamental parameter of the proce-

dure. 1

1Elegant realization, making use of the dynamics of strings
with piecewise constant initial conditions.
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A string break is realized via quark-antiquark or
diquark-antidiquark pair production with probability

pi(j) =
1

Z
exp

(

−π
M2

i(j)

κ

)

with
Mij =Mi +Mj + cicjM0

Transverse momenta ~pt and −~pt are generated at each break-
ing, according to

f (k) ∝ e−|~pt|/2p̄t , (1)

with a parameter p̄t.
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Jets:

Parton ladder = color flux tubes = kinky strings

remnant

remnant

flux tube

(here no IS radiation, only hard process producing two gluons)
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which expand and break
via the production of quark-antiquark pairs
(Schwinger mechanism)

remnant

remnant
jet

jet

String segment = hadron. Close to “kink”: jets
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Check: jet production in pp at 7 TeV
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Comparison with parton model calculation

using CTEQ PDFs for pp at 7 TeV
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V Collectivity in EPOS
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Heavy ion collisions

or high energy & high multiplicity pp events:

� the usual procedure has to be modified, since the density
of strings will be so high that they cannot possibly decay
independently

Some string pieces will constitute bulk matter,
others show up as jets

These are the same strings (all originating from hard
processes at LHC) which constitute BOTH jets and bulk !!
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again: single scattering => 2 color flux tubes

remnant

remnant

flux tube
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... two scatterings => 4 color flux tubes

remnant

flux tube

remnant
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... many scatterings (AA) => many color flux tubes

=> matter + escaping pieces (jets)
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Core-corona procedure (for pp, pA, AA):
Pomeron => parton ladder => flux tube (kinky string)

✗

✖

✔

✕

String segments with high pt escape => corona,
the others form the core = initial condition for hydro

depending on the local string density
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Core:

(we use α and β rather than σ and τ )

We split each string into a sequence of string segments,
corresponding to widths δα and δβ in the string parameter
space

Picture is schematic:
the string extends
well into the trans-
verse dimension,
correctly taken into
account in the calcu-
lations z

t

X(  ,  )α β

X(α+δα,β+δβ)
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Energy momentum tensor and the flavor flow vector at
some position x at initial proper time τ = τ0:

T µν(x) =
∑

i

δpµi δp
ν
i

δp0i
g(x− xi),

Nµ
q (x) =

∑

i

δpµi
δp0i

qi g(x− xi),

q ∈ u, d, s: net flavor content of the string segments

δp =
{

∂X(α,β)
∂β

δα+ ∂X(α,β)
∂α

δβ
}

: four-momenta of the segments.

g: Gaussian smoothing kernel with a transverse width σ⊥

The Lorentz transformation into the comoving frame provides
the energy density ε and the flow velocity components vi.
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The evolution of the system for τ ≥ τ0 treated

macroscopicly, solving the equations of

relativistic hydrodynamics:

Three equations concerning conserved currents:

∂νN
ν
q = 0

with

N ν
q = nq u

ν

and nq (q =u ,d, s) representing (net) quark densities,

uν is the velocity four vector.
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Four equations concerning energy-momentum

conservation:

∂νT
µν = 0.

The energy-momentum tensor T µν is

� the flux of the µth component of the momentum

vector

� across a surface with constant ν coordinate (us-

ing four-vectors)
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T 00: Energy density dE/dx1dx2dx3 (x0 const)

T 01: Energy flux dE/dx0dx2dx3 (x1 const)

T i0: Momentum density

T ij: Momentum flux
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The equation

∂νT
µν = 0

is very general, no need for thermal equilibrium, no
need for particles.

The energy-momentum tensor is

the conserved Noether current

associated with space-time translations.
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� We have 4+nf equations, so we should express T
in terms of 4 quantities (unknowns)

� and/or find additional equations

� which means additional assumptions
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First approach: Ideal Fluid

In the local rest frame of a fluid cell:

� T 00 = ε (energy density in LRF)

� T 0i = 0 (no energy flow)

� T 0i = 0 (no momenum in LRF)

� T ij = δijp (p = isotropic pressure)
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In arbitrary frame:

T µν = (ε + p)uµuν − pgµν

+ Equation of state p = p(ε) of QGP from lQCD

=> 4 equations for 4 unknowns (ε, velocity)
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Other way of writing T :

T µν = εuµuν − p∆µν

with ∆ being the projector ⊥ to u (∆µνuν = 0):

∆µν = gµν − uµuν
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Including viscous effects, following Landau:

Navier Stokes equations (with shear and bulk viscosity η, ζ ):

T µν = εuµuν − (p + Π)∆µν + πµν

πµν = πµνNS = 2η∇〈µuν〉,

Π = ΠNS = −ζ∇αuα

A〈µBν〉 =
1
2

(
∆α
µ∆

β
ν +∆α

ν∆
β
µ − 2

3
∆αβ∆µν

)
AαBβ, ∇µ = ∆µν∂ν

πµν, Π shear stress tensor, bulk pressure
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NS does not work:

� instabilities due to acausal behavior
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Solution (Israel-Steward):

T µν = εuµuν − (p + Π)∆µν + πµν

πµν = πµνNS + τπ (−Dπµν + Iµνπ ) ,

Π = ΠNS + τΠ (−DΠ + IΠ)

with D = uµ∂µ

Different choices for the I. Implemented in EPOS3 by Y. Karpenko:
Iµνπ = −4

3
πµν∂γu

γ − [uνπµβ + uµπνβ]uλ∂λuβ, IΠ = −4
3
Π∂γu

γ
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EPOS implementation (Yuri Karpenko)

Milne coordinates:

η =
1

2
ln
t+ z

t− z

τ =
√
t2 − z2

Metric tensor:
gµν = diag(1,−1,−1,−1/τ 2).

Nonzero Christoffel symbols:

Γη
τη = Γη

ητ = 1/τ, Γτ
ηη = τ.

The hydrodynamic equations (using covariant drivatives):

∂;νT
µν = ∂νT

µν + Γµ
νλT

νλ + Γν
νλT

µλ = 0
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Freeze out

happens at a hypersurface defined by T = TH (for given TH ).

Hyper-surface: xµ = xµ(τ, ϕ, η):

x0 = τ cosh η, x1 = r cosϕ, x2 = r sinϕ, x3 = τ sinh η,

with r = r(τ, ϕ, η).

The hypersurface element is

dΣµ = εµνκλ
∂xν

∂τ

∂xκ

∂ϕ

∂xλ

∂η
dτdϕdη,

(with ε0123 = 1)
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Computing the derivatives, one gets:

dΣ0 =

{

−r ∂r
∂τ
τ cosh η + r

∂r

∂η
sinh η

}

dτdϕdη,

dΣ1 =

{
∂r

∂ϕ
τ sinϕ+ r τ cosϕ

}

dτdϕdη,

dΣ2 =

{

− ∂r

∂ϕ
τ cosϕ+ r τ sinϕ

}

dτdϕdη,

dΣ3 =

{

r
∂r

∂τ
τ sinh η − r

∂r

∂η
cosh η

}

dτdϕdη.
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Cooper-Frye hadronization amounts to calculating

E
dn

d3p
=

∫

dΣµp
µf(up),

with u being the flow four-velocity in the global frame, related
to Milne fram via

u0 = ũ 0 cosh η + ũ 3 sinh η ,

u1 = ũ 1 ,

u2 = ũ 2 ,

u3 = ũ 0 sinh η + ũ 3 cosh η .

Similarly p expressed in terms of p̃ in the Milne frame.

f is the Bose-Einstein or Fermi-Dirac distribution.
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Hadronic afterburner: UrQMD

After “hadronization” hadrons follow straight and may still in-
teract via

h1 + h2 →
∑

j

h′j

We use “UrQMD”.

M. Bleicher et al., J. Phys. G25 (1999) 1859;

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys.
Rev. C78 (2008) 044901
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VI Flow in small systems

=> comparing models

with / without collectivity built in
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pPb results (more results: arXiv:1312.1233)

We will compare EPOS3 with data

and also with

EPOS LHC
LHC tune of EPOS1.99, :
same GR, but uses parameterized flow
T. Pierog et al, arXiv:1306.5413

AMPT
Parton + hadron cascade -> some collectivity
Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang and S. Pal, Phys. Rev. C 72, 064901 (2005).

QGSJET
GR approach, no flow
S. Ostapchenko, Phys. Rev. D74 (2006) 014026
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CMS: Multiplicity dependence

of pion, kaon, proton pt spectra

CMS, arXiv:1307.3442

We plot 4 centrality classes:
〈
N offline

trk

〉
= 8, 84, 160, 235 (in |η| < 2.4)

Multiplicity = centrality measure
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ALICE: compare pt spectra for identified particles in differ-
ent multiplicity classes: 0-5%,...,60-80%
(in 2.8 < ηlab < 5.1) From R. Preghenella, ALICE, talk Trento workshop 2013

Useful : ratios (K/pi, p/pi...)
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No multiplicity dependence (not trivial to get the peripheral right)
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11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes169

v2 in PbPb

from central

to peripheral

Changes

smoothly

towards

peripheral

=>

physics changes
smoothly
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with EPOS

simulations

Flow is

needed

even for

peripheral

collisions!
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“Ridges” in pA

ALICE, arXiv:1212.2001, arXiv:1307.3237
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Central - peripheral (to get rid of jets)
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Identified particle v2
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pPb in EPOS3:

Pomerons (number and positions)
characterize geometry (P. number ∝ multiplicity)

random

azimuthal

asymmetry

=>

asymmetric flow

seen at higher pt

for heavier ptls

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
 x (fm)

 y
 (

fm
)

 pPb 5TeV

  8 Pomerons

η =  1.00



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes175

v2 for π, K, p clearly differ
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VII Recent developments

(Saturation, strangeness and
charm enhancement with

multiplicity)
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Reminder :

σtot =
∑

cutP

∫
∑

uncutP

∫

A

B

uncut
−G

cut
G

︸ ︷︷ ︸dσexclusive

=
= remnant

nucleon

nucleon

parton ladders

=> kinky
strings
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Non-linear effects

Computing the expressions G for single Pomerons:
A cutoff Q0 is needed (for the DGLAP integrals).

Taking Q0 constant leads to a power law increase
of cross sections vs energy (=> wrong)

because non-linear effects
like gluon fusion are not
taken into account

ladder partons

nucleon
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Solution: Instead of a constant Q0, use a dynami-

cal saturation scale for each Pomeron:

Qs = Qs(NIP, sIP)

with

NIP = number of Pomerons connected
to a given Pomeron (whose probability

distribution depends on Qs)

sIP = energy of considered Pomeron nu
cl

eo
ns

nu
cl

eo
ns
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We get Qs(NIP, sIP) from fitting

� the energy dependence of elementary quantities

(σtot, σel, σSD, dnch/dη(0)) for pp

� the multiplicity dependence of dnπ/dpt
at large pt for pp at 7 TeV

We find

Qs ∝
√

NIP × (sIP)
0.30

CGC for AA:

Qs ∝ Npart × (1/x)0.30
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Parton distributions

dn/dp

p

t

t

small Qs

large Qs

Increasing multiplicity

=> increasing NPom

=> Increasing Qs

=> harder Pomerons

=> harder strings

=>

=> more high pt particles

=> Strong increase of 〈pt〉 with multiplicity
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These saturation effects concern the corona !

What about multiplicity dependence of

core-corona separation ?

� First check particle ratios
(core-corona)

� Then mean pt vs multiplicity
(core-corona+saturation)

We compare simulations to ALICE data
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Particle ratios to pions vs
〈
dnch
dη

(0)
〉
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Ωx8 Ξx3  K*x2.3

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76TeV)

Refs: next slide
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Mean pt vs
〈
dnch
dη

(0)
〉
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p t> ALICE data

Ω

Ξ
Λ

Κ
π
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<
p 

> t

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76TeV)

Data partly collected by A. G. Knospe
Refs:
<dNch/deta> in Pb+Pb: Phys. Rev. Lett. 106 032301 (2011)
pi+-, K+-, and (anti)protons in Pb+Pb: Phys. Rev. C 88
044910 (2013)
Lambda in Pb+Pb: Phys. Rev. Lett. 111 222301 (2013)
Xi- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016)
pi+-, K+-, (anti)protons, and Lambda in p+Pb: Phys. Lett. B
728 25-38 (2014)
<dNch/deta> in p+Pb: Eur. Phys. J. C 76 245 (2016)
Xi- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016)
<dNch/deta> in p+p 7 TeV: Eur. Phys. J. C 68 345-354
(2010)
pi+-, K+-, and (anti)protons in p+p 7 TeV: Eur. Phys. J. C 75
226 (2015)
Xi- and Omega in p+p 7 TeV: Phys. Lett. B 712 309 (2012)
and data points from Rafael Derradi de Souza, SQM2016
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D or J/Ψ multiplicity vs
dnch
dη

(0) in pp
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pp  200GeV data
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J/Psi

pt>4GeV/c

STAR, shown at MPI2016

strongly nonlinear increase
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Core-corona picture in EPOS

Gribov-Regge approach => (Many) kinky strings
=> core/corona separation (based on string segments)

central AA

peripheral AA
high mult pp low mult pp

core => hydro => statistical decay (µ = 0)
corona => string decay
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Pion yields: core / corona contribution
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hc = hadronic cascade

(UrQMD)
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Proton to pion ratio
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A. Andronic et al.,

arXiv:1611.01347

T = 156.5MeV, µB = 0.7MeV
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Omega to pion ratio
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Kaon to pion ratio
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Lambda to pion ratio
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Xi to pion ratio
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Ratios h/π for h = p,K,Λ,Ξ,Ω vs
〈
dn
dη

(0)
〉

:

Core and corona contributions separately

roughly constant

Difference (core - corona) increasing for

p → K → Λ → Ξ → Ω

=> inceasing slope
(not enough for Ξ, Ω)
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Average pt of protons
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Average pt of Omegas
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Average pt of lambdas
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Average pt of kaons
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Average pt of K, p,Λ,Ξ,Ω vs
〈
dn
dη

(0)
〉

:

Moderate increase of core contribution
(same for pp and pPb, similar to PbPb)

Strong increase of corona contribution
(stronger for pp than for pPb, much stronger than for PbPb)

Slope(pp) > slope(pPb) >> slope(PbPb)

K, π : pp-pPb splitting

The multiplicity dependence of the corona

contribution is crucial
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Very closely related to this discussion:

The multiplicity dependence

of charm production (D, J/Ψ,...)

The “ultimate tool” to test multiple

scattering (and the implementation

of QS)
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EPOS 3 compared to ALICE data
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EPOS 3 compared to RHIC data
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Multiplicity at FB rapidity (LHC)

0

5

10

15

0 1 2 3 4 5 6
 dnch/dη(FB) / <dnch/dη(FB)>MB

 d
n D

/d
y(

0)
 / 

<d
n D

/d
y(

0)
> M

B

diagonal

pt
1-2
2-4
4-8
8-12

GeV/c

ALI  EPOS
CE   full

FB =

forward/backward

rapidity range:

2.8 < η < 5.1
and

−3.7 < η < −1.7

Smaller increase



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes203

Low

multi-

plicity

(LM)

SmallNPom

few soft IP’s IP = Pomeron

“Hardness”
increases
with NPom

(larger Qs)

High

multi-

plicity

(HM)

many

hard

IP’s
on avg

(A) more IP’s, but less
hard

(B) fewer IP’s, but
harder
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LM → HM:

Pomerons get harder (larger Qs)

→ favors high pt or large masse production

in particular due to case B (fewer IP’s, but harder)

for highest pt bins !

Bigger effect at RHIC due to much narrower NPom

distribution (harder IP’s are needed)

Smaller effect for
dn
dη

(FB) as multipl. variable

(case B is replaced by case C: fewer IP’s, but more covering
the FB rapidity range)


