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Heavy Ion and cosmic ray
generators

Klaus Werner
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I Introduction
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Before 2010:

Proton-proton scattering:
elementary, understood in terms of pGQCD

Heavy ion collisions:
Collective effects, formation of a (flowing)
quark-gluon-plasma, macroscopic description

Since 2010: Incredibly interesting and unex-
pected pp and pPb results at the LHC (collective

effect also in pp?)
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Collective effects means

0 Primary interactions att = 0

0 Secondary interactions
formation of “matter” which expands
collectively, like a fluid

In the following:
An example of a EPOS simulation of expanding
matter in pp scattering
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pp @ 7TeV EPOS 3.119
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pp @ 7TeV EPOS3.119
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pp @ 7TeV EPOS 3.119
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pp @ 7TeV EPOS 3.119
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CAlhAanl Taales

pp @ 7TeV EPOS 3.119
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pp @ 7TeV EPOS3.119
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pp @ 7TeV EPOS3.119
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pp @ 7TeV EPOS3.119
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Radial flow visible in particle distributions

Particle spectra affected by radial flow
102

TK pA

hydrodynamics (solid)

10
string decay (dotted)

dn/dptdy

=> mass ordering of (p;), lambda/K increase
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pPb at 5TeV CMS, arXiv:1307.3442

CMS preliminary
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Strong variation of shape with multiplicity
for kaon and even more for proton pt spectra

(flow like)



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 22

A/ K versus pT (high compared to low multiplicity)
in pPb (left) similar to PbPb (right)
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In AA: partially due to flow
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Ridges & flow harmonics

assoc

1.0-2.0 GeVic p‘T”gg 2.0-4.0 GeV/c

Ridges appear in

R

R 1 dn .

Ntrlgg dAQbA?] 1.3]

due to initial L2
azimuthal 11
anisotropies
(longitudinally
invariant) 5

EPOS3.074
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Initial “elliptical”

matter distribution: 'T\
\\ /
~—__
Preferred expansion ~ ———
along ¢ =0 -
and ¢ = -
_

ns-invariance /

same form at any 7;

Ns = %lnﬁ—i / W \
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x 1+ 209 cos(2¢)

S E
S 02
Particle § 015 /\/\
distribution: ,'é -
Preferred = 01 =
directions 005 [
gb:Oandqb:W Bl b b b b b

-1 0 1 2 3 4
¢

Dihadrons:
preferred A¢ = 0 and A¢ = 7 (even for big An)
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Initial “triangular” \
matter distribu- /1
tion: \

Preferred expansion
along ¢ = 0, ¢ = 2,
and ¢ =

/
=
I

ns-invariance
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x 1+ 2v3cos(39)

_g' ~
Particle = 0.2 =
distribution: 015 W
Preferred g 01 &
directions ) 005
¢ — O, ¢ — §7T, =
_4 07\‘\\H‘HH‘HH‘HH‘HH‘\H
and ¢ = 37 1 0 1 2 3 4
¢
Dihadrons:

preferred A¢ =0, and A¢ = 37, and A¢ = 37
(even for large An)
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In general, superposition of several eccentricities ¢,,,

[ dzdyr?e™e(z,y)
[ dxdyr?e(x,y)

PP
g™ =

Particle distribution characterized by harmonic flow
coefficients

o™ — / 46 ¢ ()



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 29

At ¢ = 0: Here, v, and v non-zero
The ridge o 1 + 209 cos(2¢) + 2v3 cos(3¢)
s ~
. © —
(extended in 7) % 0.2 }

f(¢)

Awayside peak
may originate
from jets, not
the ridge (for
large An)

-1 0 1 2 3 4

¢
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CMS: Ridges (in dihadron correlation functions)
also seen in pp (left) and pPb (right)
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CMS (2010) ar?ﬁV¢1009-‘ﬂ22 CMS (2012) arXiv:1210.548%
JHEP 1009:091,2010 Phys. Lett. B 718 (2013) 795

Looks like flow !
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Flow harmonics, identified particles I

Flow shifts par- Vo o _
ticles to higher Increasing mass

A
Dt =>
Effect increases
wth mass

~ B

Also true for vy
VS Py
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ALICE: v2 versus pT: mass splitting (r, K, p)
in pPb (left) similar to PbPb (right)
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Typical flow result!
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So : “Flow-like phenomena” are also seen
in pp and pA, therefore:

Heavy ion approach

= primary scattering
+ subsequent fluid evolution

becomes interesting for pp and pA
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II Theoretical concepts

concerning primary interactions

providing initial conditions
for secondary interactions
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Poles and branch cuts I

Even functions f(z) of a real variable =
may need to be continued into the complex plane,
to understand their properties.

Example f(z) = i f:( >

The radius of convergence is

o ~1fn _
p= lm |a,| " =2
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Which is obvious, since Im z
f considered as function
of a complex variable z, 1
writes ,
1 1 /Rez

f(z):T/(%)

having a pole at z = 21,

Blue area: convergence

whereas f(z) has no singularity (for = € IR)
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Branch cuts

An example: The logarithm.

The exponential function defines a mapping M

C—C

M
w— 2z = exp(w)

which is well defined in the whole complex plane.
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y=Imw

Consider w = z +1y, with z 2 W2

fixed and y going from —=
to .

X =Rew
(Trajectory ~ going from
wy; = x — 17 to wy = x + i7)
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The mapped trajectory ' = M(~) is given as
z = exp(w) = exp(z) exp(iy)

=> A circle with start and end point z; = 23 = —¢€”
y=Imw Im z
[ W2
X =Rew
Z21X7Zy Re z
) Wl
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Doing the inverse mapping
M 2z — w=log(2),

we get for z; = 2, two different values w; and w, !!

One has to define log in C — R< (branch).
The negative real axis is called branch cut.
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Im z y=Imw
[ ] W2
Zs R
X =Rew
Z1 Re z
) Wl
The discontinuity at z = —e":

log(z + i€) — log(z — i€) = 2mi
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Cut diagrams I

The scattering operator S is defined via

[t = +o00) = S |¥(t = —o0)
Unitarity relation SS = 1 gives

1 = (i ATS@ A
= D (ST (1S )
f

= D _(fISI" {fI1S]i)
f
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Expressed in terms of the S-matrix:

1= 85,5
f

Using Spi=0dpi + z'(27r)45(pf —pi)Tyi
dividing by (27)%3(0) :
(T - = S ooy =) T
= 2w 0ot

= QSO'tOt
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The l.h.s. :

1

7

(Ty — T33) = 2ImT

So we get the optical theorem

2mT; = Y (2m)'6(ps — pi) |Tpil* = 25 1o
f
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Assume:

O T;; is Lorentz invariant — use s, t

O T;i(s,t) is an analytic function of s, with s consid-
ered as a complex variable
(Hermitean analyticity)

O T(s,t) is real on some part of the real axis

Using the Schwarz reflection principle, 7;;(s,t) first
defined for Ims > 0 can be continued in a unique
fashion via Tj;(s*,t) = Tj;(s, t)*.
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So:

1 1 .

= (Tiils, 1) = Tials,1)") = = (Tua(s, t) — Tua(s", 1))
Def:

discT = Ty (s + i€, t) — Ty(s — i€, t)
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We have finally

1.,
lescT = (2m)*(p; — pi) Zf: Tri|* = 25 04

Interpretation: %discT can be seen as a so-called “cut
diagram”, with modified Feynman rules, the “inter-
mediate particles” are on mass shell.
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Modified Feynman rules :

O Draw a dashed line from top to bottom

O Use “normal” Feynman rules to the left

O Use the complex conjugate expressions to the right

O For lines crossing the cut: Replace propagators
by mass shell conditions 2760(p°)d(p? — m?)
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Cutting a diagram representing elastic scattering

corresponds to inelastic scattering
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Cutting diagrams is useful in case of substructures:

Precisely the multiple scattering structure
in EPOS
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o

Cut diagram
= sum of products of cut/uncut subdiagrams
=> Gribov-Regge approach of multiple scattering
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Parton evolution I

A fast moving proton

emits successively
partons  (mainly
gluons), quasi-
cloud real (large gamma

of gluons factors)

proton
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... which can be probed by a virtual photon
(emitted from an electron)

photon splits

color into g-gbar
dipole
t q — Color dipole
gbar
p k p and k are

proton photon proton and
photon  mo-
v/ mentum
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What precisely the photon “sees” depends on two
kinematic variables,

the virtuality
Q2 — k2
and the Bjorken variable
Q2
—_— ZPT]{:

which probes partons with momentum fraction z.
It determines also the approximation scheme to com-
pute the parton cloud.

i
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DGLAP: sum-

In 1/x saturation ming to all or-
ders of a,InQ?

sum-
ming to all or-
ders of o In 2

) = x A
= Qs= X BFKL:
@ BFKL

DGLAP )
Linear

n QZ equations
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BFKL (Balitsky, Fadin, Kuraev, and Lipatov):

0p(z,q) asN,
> [ rKa (k)

(9111% T

. ) & 2k
with .CCg(.ZC,Q ) - 0 ng(ka)a
DGLAP (Dokshitzer, Gribov, Lipatov,

Altarelli and Parisi):

dg(x,Q*) Ldz ay T
o —/x — 5. P2)e(-. Q%)
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Very large In1/x : Saturation domain

Non-linear
effects

Gluon from

t one cascade
is  absorbed
by another

proton one
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pp scattering (linear domain) I

proton proton

Same evolution as in proton-photon (causality)
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Different way of plotting the same reaction

0.5 log(X'/X)
nucleon

=

nucleon

t=0
time

inelastic scattering diagram
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Corresponding cut diagram

referred to as “cut parton ladder”
= amplitude squared of the inelastic diagram
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Corresponding elastic diagram

=

referred to as “(uncut) parton ladder”
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Soft domain I

Very small In Q*: No perturbative treatment!

But one may use again the hypothesis of Lorentz
invariance and analyticity of the T-matrix. One
starts with a partial wave expansion of the T-matrix
(Watson-Sommerfeld transform) :

T(t,s) = > (2j+1)T(j,)Pi(2)

J=0

with ¢t oc z — 1, 2 = cos ¥, P;: Legendre polynomials.



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 63

Im j
With «(s) being the right-
most pole of 7(j,s) one .
gets for t — oo: 0 (s)
T(t,s) o<t
* Rej

and assuming crossing symmetry one gets the fa-
mous asymptotic result

T(s,t) o s*W
with the “Regge pole”

a(t) = a(0) + o't
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Perturbative: Soft:

Parton ladder Soft Pomeron

=

gluons fields

T-ma’ErDl}éEgrlgl)puted T-matrix parametrized
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Formulas (see Phys.Rept. 350 (2001) 93-289):

§ asoft(o)

N .9
Tsoft(sa t) = 8mS 1 YPom—parton S_
0

X eXp(ASOft t) )

with .
S

_ 2 /
)‘soft - 2szom—parton + Aot In —.

S0
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Cut soft Pomeron (Schwarz reflection principle):

1
—disc Tsoft(§7 t)
7
1 L A
= ; [Tsoft(S + ZO, t) - Tsoft(s T 7’07 t)]

= 2Im Tsoft(=§7 t)
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Interaction cross section,

R 1 R
Osoft(5> — 2_§21m Tsoft(57 0) )

§ asoft(o) —1

_ 2
- 87T/Ypart S_O )

using the optical theorem (with ¢ = 0),

which grows faster than data
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Semihard Pomeron I

parton
|adder
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Space-time picture of semihard Pomeron

parton
cascade

soft preevolution

proton proton
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Hard cross section and amplitude (see Phys.Rept. 350 (2001)

93-289) :
A 1 Eo
ol (5,Q2) = 572l 77" (5, =0)
ml
— K Z/dededpL d]]jom(q;gxl;@pi)
1

E]Q%D(xB7 Q¢ Mp) Egep (x5, Q5 Mp)0(My — QF)

One knows (Lipativ, 86): amplitude is imaginary, and
nearly independent on ¢ => (with R? , ~0) :

T
lelard(sa t) 08 ahard( QO) exXp (Rhard t)
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Semihard amplitude :

, . Ydzt dz—
Z]1semihard($7 t) - Z

jkonFz

><IHl]joft( ) Im ]1soft<;S ) Thard( _'§7t)

(valid for s — oo and small parton virtualities except
for the ones in the ladder)
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Cross sections I

(a) Exclusive: a+b —c+d
(b) Total : atb — X (sumof (a))
(c) Inclusive : a+b — ¢+ X (weighted sum of (a))

There are simple formulas for inclusive cross sec-
tions (AGK cancellations), but one needs to go be-
yond when studying high multiplicity pp.
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Consider multiple scattering amplitude
iT = | [iTp
cross section: sum over all cuts.
For each cut Pom:
%diSCTp =2ImTp =G
For each uncut one:

iTp + {iTp} =4 (1 ImTp) + {i (i ImTp)} = —2ImTp = —G
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Inclusive cross section: weighted sum over all cuts:
The multiplicity for £ cut Pomerons is kN, if N is the
multiplicity per cut Pomeron.

Contribution to the inclusive cross section for n
Pomerons:

O'i(r?c)l x ZkNGk (-@)" " ( Z > =0forn>1
k=0

Only n=1 contributes (single Pomeron) !!

AGK cancellations for n>1
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simple diagram even in case of multiple scatter-
ing

corresponds to factorization:

Oincl = F X Oclem & F
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Kind of obvious that factorization should hold for
inclusive cross sections, so

Oincl — F 0% O clem O F

may be used as starting point, with F' taken from DIS
(photon-proton).
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IIT Model overview

with contributions from T. Pierog, S. Ostapchenko, C. Bierlich,
F. Riehn, P. Tribedy, A. Fedynitch
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Models for min bias and high multiplicity pp

model Gribov | Dipole | Facto used authors
Regge risation | for CR
QGSJETII X X Ostapchenko
EPOSLHC X X Pierog, Werner
EPOS3 X Werner, Pierog
DIPSY X Lonnblad, Bierlich
IP-Glasma X Tribedy, Schenke
SIBYLL X X Engel, Riehn
DPMJETIII X X Engel, Fedynitch
PYTHIA X Sjostrand, Skands
HERWIG X Marchesini, Webber




Models for high multipl pp, pA, AA
including collective effects

o .o final detected
Relativistic Heavy-Ion Collisions particle distributions

made by Chun Shen Kinetic

freeze-out

Hadronization
Initial energy
density

collision evolution
t~0fm/c T~1fm/c T ~10 fm/c T ~10% fm/c

ohttp://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions /

79
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model primary secondary
scatterings interactions
EPOS Gribov Regge viscous hadronic
hydrodynamical | cascade
expansion of QGP
IP-Glasma | Dipole model “
Supersonic Wounded “ “
nucleon model
AMPT Minijets partonic cascade
from Pythia

Cascade means:

Successive scatterings a + b — ¢ + d according to known

sections

Cross
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Gribov-Regge multiple scattering approachl

EPOS, QGSJETII

S-Matrix based
on Pomerons

Pomerons :

Parton ladders (initial
and final state radia-
tion, DGLAP) + soft

nucleon

soft
'v..v 299

Cutting rules to get
\ % % inelastic cross sec-
W tions.

Same principle for pp,
pA, AA

more details later

nucleon
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Nonlinear effects in QGSJET

Pomeron-Pomeron coupling

0 Summing of all orders

U No energy conservation

[J (in EPOS full energy conservation, but effective treatment of nonlinear
effects)
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Nonlinear effects in EPOS

Nonlinear effects (gluon fusion) taken care of via a saturation
scale @),

Saturation scale depends on
Pomeron energy (vVztz—s) and
the environment

nucleons

Selfconsistent procedure within
multiple scattering framework
(more later)

ladder partons
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Dipole approach I

Initial state radiation in DIPSY (from Christian Bierlich)

Initial nucleon: Three dipoles

LL BFKL in b-space + corrections: A dipole (#,7) can emit a gluon at po-
sition z' with probability (P) per unit rapidity (Y)

P a (7 -9)°
dy —2m T(#—-2)2(%

Xe X X

Yo ¥ ¥
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Multiple scattering

Multiple color exchange
between dipoles i and j
with probabilities

% g (BB
4 (i — 25)*(¥i — )
-> kinky strings

0 Two “leading* strings

0 Additional strings
from loops

[0 No Remnants

AV i %
A~

S (v/ad

Many strings:
Lund strings may overlap

=> color ropes
(Larger eff. string tension)
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Initial state in IP-Glasma (from Prithwish Tribedy)

IP-Sat dipole model (r; =dipole size):
do
= 2[1 —exp (=F(ry,z,b)], Focrias(p?)zg(x, n*)T(b)
T(b) : Gaussian profile, u? = 4/r? + 12, zg : DGLAP evolution

Saturation scale (), defined via
2
F<TJ_,.T = Q—g,b) = 5

IP-Glasma: Color charge squared for projectile A and target B :

G =3 ueteons 912> With ¢g?p? o< Q2 with Q? from IP-Sat model.
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Multiple Scattering

Color charge density p4/p
generated from Gaussian
distribution with variance
92/1124 (contains DGLAP, satura-
tion)

Current
JY = 6uipA/B (33:F, «’ﬂl)

Field from [D,, F,.] = J,
Numerical (lattice) solution,
fields can be expressed in

terms of initial ones:
A= Ay A, AT =4, A

Initial configuration
e g

Single gluon
emission

Multiple scattering:
Nonlinearity in terms of A:
Infinite number of g + g — ¢
processes

Fields—Gluons—Pythia strings
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Models based on factorization

dO'Z"
Ojet :/dfld@/dp?z:fi(ﬂ?l,pf)fj(ﬂﬁz,l)f) dpQJ
t

PN

(5,1) (4)

nucl eon
PYTHIA
/ HERWIG
° SIBYLL
nucleon DPMJETIII

First step: oj; according to (A)

Second step: Multiple scattering scheme via eikonal formula

[ojet(s) T'(s, 0)]"
n!

prob(n) = exp (—0jer(s) T'(s,0))
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Multiple scattering

in SIBYLL
From F. Riehn

nucleon

Multiple scattering via
eikonal model with soft
and hard component

[0 No Remnants

nucleon

U Main scattering
=> qq-q strings

Saturati ale fi
O Further scatterings aturation scale irom

=> strings between asNe 1 aG 1
gluon pairs Q2 NZ2—-1 nR? —
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Multiple
scattering
in Pythia

arXiv:1101.2599

Color
reconnections

Gyalz EENE]
Uyaiz Qqﬂu y
|
1
1 <f—~ PL
Be—e Gyapy Tt &
A 1
Vg i
\\ | e a
/
! )
— - \ 1 I
) |
RG Qp 0 A
I
Gyall Gvall .':
val2 Gval2
Gvald Qvale.o
Qi ald
v Tvarz ¥
1
R
Geatt )
N i
\ \ ’
(Y ’
oy ,’
T~ ®
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(pL) vs Nep, pL > 100MeV, /s =7TeV

||-I|II\||||II|||||||\||||\||[||||\|||[\||||I_

L) [GeV]

0.65

0.6

0.55

— Pythia 8.145, defanlt
=== Pythia 8.145, no CR

0.45

04

| | 1111 | 1111 | 1111 | | | 1111 [ 1111 | I [ I | ]
10 20 30 40 a0 60 70 80 an
New
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IV Multiple scattering in EPOS

in collaboration with T. Pierog, S. Ostapchenko,
B. Guiot, G. Sophys, , M. Stefaniak

Parton based Gribov-Regge theory. By H.J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K.
Werner. hep-ph/0007198. Published in Phys.Rept. 350 (2001) 93-289.
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Single scattering
(single Pomeron)

0 Parton emission starts
long before the actual in-
teraction (partons are very
long-lived due to a large 7).

O Soft pre-evolution

J Subsequent parton emis-
sions towards smaller x-
values and larger virtuali-
ties (from both sides).

O The final partons from
either nucleon interact
(*hard” collision).
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Multiple scattering

Be T the elastic (pp,pA,AA) scattering T-matrix =>

28 0ot = —discT
i

Basic assumption : Multiple “Pomerons”

. 1 _. .
1T = Z P {iTpom X ... X tTpom}
k
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Example: 2 “Pomerons”




11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes 96

Evaluate

1
“disc {iTpom X - X iTpom}
1

using “cutting rules” :

A “cut” multi-Pomeron diagram
amounts to the sum of all possible cuts
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Example of two Pomerons
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Using “Pomeron = parton ladder + soft”, we have (first

diagram)

nucleon

= remnant
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Using a simplified notation
for “cut” and “uncut” Pomeron

one gets ...
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Complete result
(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

For pp, pA, AA: A_ —
cut: : : | uncut
O_tot:Z/Z/ G i |-G
cut P uncut P . _
B
dO_exclusive

Dotted lines : Cut Pomerons (parton ladders)
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A
po = [ [ TLntast oa 07 + o)
=1
B

[ 6% d=F pu(y/(6F)2 + (2F)?)

j=1
AB i le

S0 > (1 dozm,) / 11 (H doyy doy ] di‘bdib){
mily maplas k=1 “p=1 A=1

AB 1 1 mg

+ - T TA 7B
H <m—k'w H G2y s Tp o 85 10+ 070y — D2 |)
k=1 p=1

Uk
H —G(Ef 5 T8, b+ b — bf(k)D)
A=1

[I(- ¥ ot o) (- Lo ¥ )}

i=1 w(k)=1 Jj=1 7 (k)=j 7(k)=j
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0 Complicated with energy sharing
included

(10,000,000-dimensional intergrals)

0 but doable

- Parameterizations for G(z*,z, s, b)
- Analytical integrations
- Employing Markov chain techniques
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Step 1:

O We compute partial cross sections o for partic-
ular configurations K via analytical integration

O K is a multi-dimensional variable
for example for double scattering in pp with two Pomerons
involved: K = {zf,27,pn, 25,75, Do}

O Configurations K in AA scattering may be quite
complex
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Step 2:

The partial cross sections o, can be

O interpreted as probability distributions,

O enabling us to use Monte Carlo techniques to
generate configurations K.
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Since we are dealing with multidimensional proba-
bility distributions, we have to employ very sophisti-

cated
Markov chain techniques

to generate configurations according to (2.
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Configurations via Markov chains
(the heart of EPOS, see Phys. Rept. 350, 2001)

Consider a sequence of multidimensional random
numbers

L1, T2, T3y ...

with f; being the law for ;.

A homogeneous Markov chain is defined as
flx) =) fiaa(@)p(a’ — ).

with p(z’ — z) being the transition probability (or ma-
trix). Normalization : ) p(2’ — z) = 1.
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Let f be the law for z;. The law for z;,, is

Zf pla —b).

One defines an operator 7' (comme Translation)

Zf pla—0b).

So T'f is the law for z;,; when f is the law for z;.
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A law is called stationary if Tf = f.

Theorem: If a stationary law T'f = f exists, then T"f;
converges towards f (which is unique) for any f;.

So to generate (multidimensional) random numbers accord-
ing to some (given) law f,

O one constructs a 7 such that T'f = f

0O and then iterates T* f;
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One needs, for a given law f,
to find a transition matrix p such that T'f = f

Sufficient condition (detailed balance):

fla)pla —b) = f(b) p(b— a),

Proof : Tf(b) = Zf pla — b)
= Zf p(b — a)
= Zpb%a

= [f(b).
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Metropolis alorithm

Definitions:
Pab = p(a — b) )

fa - f(a)

Take
Pab = Wap Ugb - ((L 7é b) .
with
wep : proposal matrix (3, w., = 1)

uqp : acceptance matrix (u,, < 1)

This is NOT the simple acceptance-rejection method!!
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Detailed balance:
fa Pab = fb Pba

amounts to
fa Wab Uab = [ Wha Upg ,

or
Uab _ o Wha

Upq B fa Wap '
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Uab . ﬁ Whq,
Upq fa Wap

fo Wha
ab — F o )
et (fa Wab

with a function F with

is solved by

F(z)
ja N = Z.
(%)
. fo Wpa uay  F(z) fo Wea
Proof : With z = — onefinds : — = —z="=—.
fa Wab Ubg, F(%) fa Wab
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The F' according to Metropolis is
F(z) = min(z,1) .

One finds indeed

F(z) min(z,1) z/1 pour z <1 .
F(Y)  min(l1) /L pour z>1 [ 7

P’

So one proposes for each iteration a new configuation
b according to some w,;, and accepts it with probabil-

ity
. (fb Whq >
Ugpy = Min | — 1].

Y
a Wab
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Configuration lattice, define w,, such that b changes
w.r.t. « only on one lattice site (like Ising model
Metropolis)

Interaction
123 .. Miax
100 0 0 0 0o
yah\'rzccooaoo
3000 00 00
‘90 0 0 0 0O
R A N N e
oo 00000
ABe © o o o o o

Long iterations, but allows to generate very complex
configurations according to very complex laws.
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Particle production I

Generating “configurations” is only half the story:

How do we obtain the corresponding par-
tons which “make” the ladder, and finally
the hadrons?

(for a given ladder, given momenta and flavors at the
endpoints)
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For particle production, only the cut Pomerons
plays a role

the uncut ones have been summed over
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Reminder: in order to
compute the contribution

of a cut Pomeron to a par-

tial cross section, we sum
over emitted partons, inte-

grate over all momenta.

Consistency requires to use these same for-
mulas to obtain probability distributions for
the parton emissions (what we do).
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Realization: big tables with pre-calculated cross sections, to be used via
interpolation to generate partons according to iterative equations.

- 2
otals. @10 = 3 [ G [aeatah @ 5 PO Q)
+ ord( QQ’Q )
- dO? ) .
@) = X [ G [an@han 5 @0 ah

+ UBorn ( QZ)

2 dalgjorn a a2
UBorn( leQQ) = K dpLW(SapL)

X
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N\

/

Probability of single emission:
Q2

QQ sz(f) o-hard(gs Q2 QQ)

AR QY

prob(§, Q%) = o
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where the ladder rungs (gluons)
represent small transverse mo- field

mentum components!,

From partons to strings: <P
For t > 0, a (cut) Pomeron rep- CCD
resents actually a (mainly) ongi =
longitudinal color field, wding O
electric B
Q
&)

() Lund model idea, first e+e-,
then generalized to pp, see also CGC
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Realization:

One-dimensional character of the fields

=> classical string theory

(which does not use much more than some general symmetries)

O Mapping: parton ladders -> kinky strings

(parton momentum = kink)

O Classical string evolution + decay via area law
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String:

two-
dimensional
surface

x(o,T)

in
Minkowski  Break probability :

space
dP = pg dA,
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In detail: The string surface is given as

o+T
o) =zt [ g

so it is completely given in terms of some function
g"(§) with
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We consider only strings with a piecewise constant
initial velocity g, which are called kinky strings.

O This string is characterized by a sequence of
o intervals [0y, 0111], and the corresponding
constant values (say v;) of g in these intervals.

Such an interval with the corresponding constant
value of g is referred to as “kink”.
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A parton ladder represents a sequence of partons of
the type ¢ — g... — g — ¢, with soft “end partons” ¢ and
¢, and hard inner gluons g.

The mapping “partons —string” is done such that we
identify a parton sequence with a kinky string

by requiring “parton = kink”,
with o117 — o = energy of parton k

and vy = momentum of parton k / Ej.
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What is really done (PR 232, pp 87-299, 1993, PR 350, pp 93-289, 2001):

A string represents a two-dimensional surface in Minkowski space
x=z(o,7),

with o being a space-like and 7 a time-like parameter.

In order to obtain the equations of motion, we need a Lagrangian. It is
obtained by demanding the invariance of the action with respect to gauge
transformations. This way one finds the Lagrangian of Nambu-Goto:

L =—r\/(2'%)? — 2'242,

with “dot” and “prime” referring to the partial derivatives with respect to o
and 7, and with x being the string tension.
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With this Lagrangian we get the Euler-Lagrange equations of motion:

0 0L 9 OL _

or oz, | 000w,
We use the gauge fixing
2?4+ % =0and2'd = 0,

which provides a very simple equation of motion, namely a wave equation,

2 2
0z, Oz,

or? 0o?

= 0,
with the boundary conditions:

O0x,/0c =0, 0 =0,7.
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The solution of the equation of motion (with initial extension zero) is
1 o+T
o =ty ([ )
where ¢ is the initial velocity, g(o) = (0, 7),=0 -
Strings are classified according to the function ¢g. Strings with piecewise

constant g are called kinky strings, each segment being called kink, finally
identified with perturbative partons.

In the following figure, we show the evolution of a string generated in electron-
positron annihilation (4 internal kinks).
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Hadron production

is finally realized via string breaking, such that string
fragments are identified with hadrons.

Hypothesis: the string breaks within an infinites-
imal area d A on its surface with a probability which
is proportional to this area,

dP = pg dA,

where pp is the fundamental parameter of the proce-

dure. !

1Elegant realization, making use of the dynamics of strings
with piecewise constant initial conditions.
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A string break is realized via quark-antiquark or
diquark-antidiquark pair production with probability

1 M)
Pi) = 7 &Xp | =

Mij = Mz + Mj -+ CiCjMO

with

Transverse momenta p; and —p; are generated at each break-
ing, according to o
f (k) oc e Pl (1)

with a parameter p;.
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Jets:
Parton ladder = color flux tubes = kinky strings

flux tube

(here no IS radiation, only hard process producing two gluons)
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which expand and break
via the production of quark-antiquark pairs
(Schwinger mechanism) /

et

String segment = hadron. Close to “kink”: jets
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Check: jet production in pp at 7 TeV

% 1 ppat7TeV jets anti-kt
O -1
> 10
=10 L% * = EPOS3.076
PR O e o ATLAS
o -4 ** » ALICE
c 10 * preliminary
R 10 -5 ***
10 -y Kk
-7 > ._*‘****
10 B Som ige ﬁ;
10-8 L1 1 ‘ [ ‘ [ ‘ [ \!F\-\*’

0 20 40 60 80 100
jet p, (GeVlc)
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Comparison with parton model calculation
using CTEQ PDFs for pp at 7 TeV

line: CTEQ6.6M
stars. EPOS

dnparton / dp, (c/GeV)
5

1010\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
0 50 100 150 200 250 300

parton p, (GeV/c)
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V Collectivity in EPOS
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Heavy ion collisions
or high energy & high multiplicity pp events:
[J the usual procedure has to be modified, since the density

of strings will be so high that they cannot possibly decay
independently

Some string pieces will constitute bulk matter,

others show up as jets

These are the same strings (all originating from hard
processes at LHC) which constitute BOTH jets and bulk !!
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again: single scattering => 2 color flux tubes

flux tube
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... two scatterings => 4 color flux tubes

flux tube
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... many scatterings (AA) => many color flux tubes

=> matter + escaping pieces (jets)
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Core-corona procedure (for pp, pA, AA):
Pomeron => parton ladder => flux tube (kinky string)

String segments with high pt escape => corona,
the others form the core = initial condition for hydro
\_ depending on the local string density
€ 2 F core-
£ 15 Fcorona
> E
1E
05
0 -
05
1 ;
15 ? 5.7‘fm | | ‘5Pomer‘ons
_21\\\\\\\\\\\‘\\\\\\\\\
2 -1 0 1 2 0 2 4 6

X (fm) B
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Core:

(we use o« and g rather than o and 7)

We split each string into a sequence of string segments,
corresponding to widths da and 63 in the string parameter
space

Picture is schematic:
the string extends
well into the trans-
verse dimension, %
correctly taken into
account in the calcu- |
lations z X(@,p)

X (@50, p+5p)
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Energy momentum tensor and the flavor flow vector at
some position z at initial proper time 7 = 7q:

v op; opY
T (x) = Z 570 g(x — x;),

i

(5pZ
N(;L(x) - Z (5 0 q; 9 xi)?

q € u,d, s: net flavor content of the string segments
dp = {%g’ﬁ)&a + ww }: four-momenta of the segments.
¢: Gaussian smoothing kernel with a transverse width o

The Lorentz transformation into the comoving frame provides
the energy density ¢ and the flow velocity components v".
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The evolution of the system for 7 > 7y treated
macroscopicly, solving the equations of
relativistic hydrodynamaics:

Three equations concerning conserved currents:

O,N/ =0
with
Nq” =nyu”

and n, (¢ =u.d, s) representing (net) quark densities,
u” is the velocity four vector.
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Four equations concerning energy-momentum
conservation:

0, T"" = 0.

The energy-momentum tensor 7" is

O the flux of the uth component of the momentum
vector

0O across a surface with constant v coordinate (us-
ing four-vectors)



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes146

T9: Energy density dF/dz'dz?dz? (z° const)
T°!: Energy flux dF/dz"dz2dz? (z' const)
T*: Momentum density

T : Momentum flux
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The equation
0, T" =0

is very general, no need for thermal equilibrium, no
need for particles.

The energy-momentum tensor is

the conserved Noether current

associated with space-time translations.
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O We have 4 +n; equations, so we should express T'
in terms of 4 quantities (unknowns)

O and/or find additional equations

O which means additional assumptions
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First approach: Ideal Fluid

In the local rest frame of a fluid cell:

0 T% = ¢ (energy density in LRF)
0 T% = 0 (no energy flow)
0 7Y% =0 (no momenum in LRF)

0 T% = 6;;p (p = isotropic pressure)
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In arbitrary frame:

T" = (e + p)ul'u” — pg"”

+ Equation of state p = p(¢) of QGP from 1QCD

=> 4 equations for 4 unknowns (e, velocity)
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Other way of writing 7

TH = eutu” — pAH”

with A being the projector L to u (A*u, = 0):

AW = g — ut'u”



152

Including viscous effects, following Landau:

Navier Stokes equations (with shear and bulk viscosity 7, ¢ )

T = eu'u” — (p+ 1) A" + 7t
T =1y = 21 \VALTEZS

[I = HNS = —C Vauo‘

ApByy =5 (AYAD + ASAD — 2APA ) AuBg, VH = A9,

"

7w, 1l shear stress tensor, bulk pressure
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NS does not work:

O instabilities due to acausal behavior
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Solution (Israel-Steward):

T = eu'u” — (p+1I) A" 4+ 7/
T = g + Tr (=D + IFY)

IT =IIns + 1 (—DH + ]H)

with D = v"0,

Different choices for the /. Implemented in EPOS3 by Y. Karpenko:
I = =2 o) — [urm? + utr P lurOyug, Iy = —3110,u”
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EPOS implementation (Yuri Karpenko)

Milne coordinates:

11 t+ 2z
= —1In

" 2 t—z
T = Vit 22

Metric tensor:
g" = diag(1, -1, -1, —1/7%).

Nonzero Christoffel symbols:
r =ry=1/r, I, =71
The hydrodynamic equations (using covariant drivatives):

9., T" = 0,T" + TH T + T, T = 0
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Freeze out

happens at a hypersurface defined by 7' = T} (for given T}).

Hyper-surface: =+ = z#(1, ¢, n):

2" = 7coshn, x' =rcosyp, 2° = rsinyp, 2° = 7sinh,
with r = r(7, ¢, n).

The hypersurface element is

ox” 0" Ox?
A, = € — ——dTtdpdn,
S Ao On Teed

(with %123 = 1)
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Computing the derivatives, one gets:

ddy = {—TZ—TT coshn + r— sinh 7]} drdpdn,
T

¥, = —Tsmgo—i-rTcosgo drdedn,

d¥s = 7“—7' sinhn — 7"— cosh

dde = { ——7' COS  + 7 T sin ¢ }degodn,
{ an

} drdpdn.
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Cooper-Frye hadronization amounts to calculating

dn

EdTp = /dZup“f(up),

with u being the flow four-velocity in the global frame, related
to Milne fram via

u’ = @°coshn+ @?sinhn,
o= at,
u? a?,
u? = @"sinhn+ a3 coshy.

Similarly p expressed in terms of p in the Milne frame.

f is the Bose-Einstein or Fermi-Dirac distribution.
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Hadronic afterburner: Ur@QMD

After “hadronization” hadrons follow straight and may still in-
teract via

h1+h2—>Zh;

J

We use “Ur@QMD”.
M. Bleicher et al., J. Phys. G25 (1999) 1859;

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys.
Rev. C78 (2008) 044901
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VI Flow in small systems

=> comparing models

with / without collectivity built in
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pr results (more results: arXiv:1312.1233)

We will compare EPOS3 with data
and also with

EPOS LHC
LHC tune of EPOS1.99, :

same GR, but uses parameterized flow
T. Pierog et al, arXiv:1306.5413

AMPT

Parton + hadron cascade -> some collectivity
Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang and S. Pal, Phys. Rev. C 72, 064901 (2005).

QGSJET

GR approach, no flow
S. Ostapchenko, Phys. Rev. D74 (2006) 014026
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CMS: Multiplicity dependence
of pion, kaon, proton pt spectra

CMS, arXiv:1307.3442

We plot 4 centrality classes:

(Npfine) = 8 84, 160, 235 (in |n| < 2.4)

Multiplicity = centrality measure
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> = >
S 45 ET QGSJETIO4 cMs B 5 £ T OAMPT CMS
S 4 S 3 = - b
S.2 B/ ™ 5 4
35 = 'v“;‘
3 = ‘777vv"y
25 5 T 3
2 2
15
1 1
0.5 /
0 E\H‘\H‘\H‘H‘\‘P\.\ Tt L, 0 7\\\‘\\\‘\\\‘\\\ “““H“
0 02040608 1 121416 0 02040608 1 121416
> Pt~ pt
€ 5 n EPOSLHC cms 245 £ T _EPOS3074 oMe
° C /ove > S, E Y >
S 4 s 457 v
S f T35 =
3 Y. 3 ;7 Vv777777;
2.5 §
2 2
15
1 1
d 0.5 7
O 7\\\‘\\\‘\\\‘\\\ ““““‘ O :““““““““\\\ ““““‘
0 02040608 1 121416 0 02040608 1 121416

Little change with multiplicity for pions
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Kaon spectra change with multiplicity
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Strong variation of proton spectra => flow helps

165



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes166

ALICE: compare pt spectra for identified particles in differ-
ent multiplicity classes: 0-5%,...,60-80%
(in 2.8 < Thab < 5.1) From R. Preghenella, ALICE, talk Trento workshop 2013

Useful : ratios (K/pi, p/pi...)

12

007

E o
5 £ KI/m pPb5.02Tev % [ AlKs pPb5.02TeV
= 0.6 Egata ALICE = 1 [dataALICE
05 & o~ 08 |- e
04 s B RITREI
03 E 0.6 — LI °
E 04 — & <.,
0.2 = 0-5% C aT05%
01 F 60-80% 0.2 = & 60-80%
0:\H\‘\H\‘\\H‘\\H‘\H\‘\\\\ 07\H\‘H\\‘\\\\‘\\H‘\H\‘\\\\
o 1 2 3 0o 1 2 3

o @eviey “o @eviey
Significant variation of lambda/K - like in PbPb
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£ K/m pPb5.02TeV
F data ALICE
- QGSJETIIQ4

-

0-5%

)

0-5%
60-80%

= 60-80%

’\H\‘HH‘HH‘HH‘HH‘HH

0 1 2 3 4 5 6
p, (GeVic

F K/m pPb5.02TeV

F data ALICE

FEPOS LHC,

o 1 2 3

4 5 6
p, (GeVic)
multiplicity dependence (not trivial to get the peripheral right)

F K/ pPb5.02TeV

F data ALICE

EAMPT |

E oy

= 0-5%

E 60-80%

’\H\‘HH‘HH‘HH‘HH‘HH

0 1 2 3 4 5 6
p, (GeVic

F K/m pPb5.02TeV

F data ALICE

FEPOS3.074

E S

= 0-5%

G 60-80%

’\H\‘HH‘HH‘HH‘HH‘HH

0 1 2 3 4 5 6
p, (GeVic)
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0.8
0.6
0.4
0.2

F A/Ks pPb5.02TeV
—data ALICE
F QGSJETIIOA

” * 60-80%

7\H\‘HH‘HH‘HH‘HH‘HH

0O 1 2 3 4 5 6
p, (GeVic

E A/Ks pPb5,

—data ALICE

F EPOS LHC

0-5%
60-80%

1 2 3

O T

4 5 6
p, (GeVic)

ratio

ratio

1.2

1
0.8
0.6
0.4
0.2

0
1.2

1
0.8
0.6
0.4
0.2

0

F A/Ks pPb5.02TeV

—data ALICE

iAMPT

Ce 60-80%

7\\\\‘H\\‘\\\\‘\\H‘\H\‘\\\\

0 1 2 3 4 5 6
p, (GeVic

F A/Ks pPbb5.02TeV

—data ALICE

- EPOS3.074

o 60-80%

7\\\\‘H\\‘\\\\‘\\H‘\H\‘\\\\

0 1 2 3 4 5 6
p, (GeVic)

Significant multiplicity dependence. Flow helps
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&0
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smoothly g ° - %o
o o 3§ o o
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. ~ 0 Il Il
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02 ji&%o - o ATLAS
=> E R
physics changes © 10 0 10

smoothly P (Gevic) . (Gev/o)
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with EPOS
simulations

Flow is
needed
even for
peripheral
collisions!

~

>

~
>

0.2

0.2

0-10% 10-20%
L L x®
. f %
Ok, ° 5 5
ﬁ Il O*\ ’ Il ° *" ° Il Il Il *‘
| 20-30% | * 30-40%
#RTo
L @% * L )
L o, L %
L ° ° = o o
i f
Il Il Il ‘ Il Il Il ‘
B 40-50% 50-60%
F% *
L % L 5
- O*O - o 4o
i N
60-70%
- A X - o ATLAS
L o o L
- +O © - * model
[% o L
| |
0 10 0 10
p, (GeV/c) p, (GeV/c)
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“Ridges” in pA

ALICE, arXiv:1212.2001, arXiv:1307.3237

2< Prig < 4 GeVic p-Pb | s, =5.02 TeV
T <P e <2 GeVie

— 0-20% P 1.0-2.0 GeVic p‘Trigg 2.0-4.0 GeVic

2
EPOS3.074
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Central - peripheral (to get rid of jets)

p3**° 1.0-2.0 GeVic pI'% 2.0-4.0 GeVic
2< Praig < 4 GeVic T

1< P assoc < 2GeVic

p-Pb|s,, =5.02 TeV
(0-20%) - (60-100%)

2 ALICE EPOS3.074
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Identified particle v2

~ 0.18
> F *
016 —AHCE
- HET
014 = K
012 | ®p
01 = 0 :
oog - 1% =
006 = LA ¢
004 — mA
002 A¢¢¢ I ‘ I I ‘ I I
0 1 2 3 4

Py

mass splitting, as in PbPb !!!
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pPb in EPOS3:

Pomerons (number and positions)
characterize geometry (P. number « multiplicity)

random = 15 ¢
azimuthal = 4
> C
asymmetry E
asymmetric flow 0
seen at higher pt -
. -05 |-
for heavier ptls E
-1
- 8 Pomerons
_1.5 7\\H‘HH‘HH‘HH‘HH‘HH

15 -1 05 0 05 1 15
x (fm)
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v2 for 7, K, p clearly differ

<~ 0.14

- EPOS3.074
0.12 === TT -
- ee K
0.1 [ — p
0.08
0.06 ICE
R S mT
0.04 — A K
C o
0.02 — P
| | | | ‘ | | | | ‘ | | | | ‘ | | | |
0.5 1 1.5 2 2.5

Py

mass splitting, due to flow
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VII Recent developments

(Saturation, strangeness and

charm enhancement with
multiplicity)
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Reminder :

Ay

cut P uncut P

A

S T Tmsive d
= => kinky
oo Ft strings

i = remnant

parton ladders
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Non-linear effects

Computing the expressions G for single Pomerons:
A cutoff Q is needed (for the DGLAP integrals).

Taking (), constant leads to a power law increase
of cross sections vs energy (=> wrong)

nucleon

because non-linear effects
like gluon fusion are not

taken into account
ladder partons
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Solution: Instead of a constant 0, use a dynami-
cal saturation scale for each Pomeron:

Qs — QS(NIPa SIP)

with

Np = number of Pomerons connected
to a given Pomeron (whose probability
distribution depends on QQ,)

nucleons

> Te oot
|

nucleons

sp = energy of considered Pomeron
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We get Qs(Np, sp) from fitting

O the energy dependence of elementary quantities
(Gtot: Ocl. OSDS dnCh/dﬁ(O)) for pp

O the multiplicity dependence of dn™ /dp;
at large p; for pp at 7 TeV

We find

Qs o /NIP X (SIP)O.3O

Qs X Nparg X (1/90)0'30

CGC for AA:
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Parton distributions Increasing multiplicity
=> increasing Npom
dr/dp => Increasing ()
small Qg => harder Pomerons

=> harder strings

Pt |=> more high pt particles

=> Strong increase of (p;) with multiplicity
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These saturation effects concern the corona!

What about multiplicity dependence of
core-corona separation ?

0 First check particle ratios

(core-corona)

0 Then mean pt vs multiplicity

(core-corona+tsaturation)

We compare simulations to ALICE data
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Particle ratios to pions vs <dg—7‘7’h(0)>

10

ratiosto 1t

10

10

-1

Ox8=x3 K x2.3 ALICE data
mooapaHEd % K *ﬁrﬁrﬁzﬁzer
"oy m X *
@OOAI 3 ;1‘: ok
e e A ii?r%/\

5

T TTTTI
(o] o

kK
oowo® Kk ok ok

g e **;?CD
s =" ﬂ( *

¢o@m *
4o *

T HHH‘
o

10 10° 10°
<dn,/dn(0)>

circles = pp (7Tev)

squares = pPb (5Tev)

stars = PbPb (2.76Tev)

Refs: next slide



Mean p; vs <%(0)>

A-o—-
o
V

dn

Q*2.5 =*1. 5 K*0.9ALICE data

oo gos ™ X o FHQ

[ \HH‘ [
10°
<dn./dn(0)>

10°

10

184

circles = pp (7Tev)

squares = pPb (5Tev)

stars = PbPDb (2.76Tev)

Data partly collected by A. G. Knospe

Refs:

<dNch/deta> in Pb+Pb: Phys. Rev. Lett. 106 032301 (2011)
pi+-, K+-, and (anti)protons in Pb+Pb: Phys. Rev. C 88
044910 (2013)

Lambda in Pb+Pb: Phys. Rev. Lett. 111 222301 (2013)

Xi- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016)
pi+-, K+-, (anti)protons, and Lambda in p+Pb: Phys. Lett. B
728 25-38 (2014)

<dNch/deta> in p+Pb: Eur. Phys. J. C 76 245 (2016)

Xi- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016)
<dNch/deta> in p+p 7 TeV: Eur. Phys. J. C 68 345-354
(2010)

pi+-, K+-, and (anti)protons in p+p 7 TeV: Eur. Phys. J. C 75
226 (2015)

Xi- and Omega in p+p 7 TeV: Phys. Lett. B 712 309 (2012)
and data points from Rafael Derradi de Souza, SQM2016
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D or J/V multiplicity vs dg;;h(o) in pp

m [ [an]
,/f p ALICE pp 7TeV flS -
o o L
= 10 =
5 5 i data
e \&10 | STAR
T %”’ = J/Psi
~ \Y B >4GeV/c
N = .
5 E 5 | ..'....
-c = L]
g N
C | -
O @ HH\\‘\H\‘\H\‘\\H‘HH‘HH‘HH‘HH © ol H\‘HH‘HH‘HH‘HH‘
0051152253354455 0O 1 2 3 4 5 6
dn,/dn(0) / <dn,/dn(0)>,s dn,/dn(0) /< dn,/dn(0) >,,5
ALICE JHEP 09 (2015) 148, STAR, shown at MPI2016

arXiv:1505.00664v1

strongly nonlinear increase
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Core-corona picture in EPOS

Gribov-Regge approach => (Many) kinky strings
=> core/corona separation (based on string segments)

central AA

peripheral AA
high mult pp low mult pp

core => hydro => statistical decay (u = 0)
corona => string decay
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Pion yields: core / corona contribution

—EPOS 3.210 /’4/
= n 2
B .
3 =
i ,,//
- //’; ’
- — full
S 4 co+co
4
-/ —e—e COIE
=/
:/\ \HHH‘ | \HHH‘ 2\ \HHH‘ 3\
1 10 10 10

<dn./dn(0)>

thick lines
= PP (7TeV)

thin lines
= pPb (5Tev)

hc = hadronic cascade

(UrQMD)
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Proton to pion ratio

ratio to Tt

| EPOS3.210  ALICE (black)
?\ e o b P PmO= @ m Q= Q= @ =@

i — full

— co+Cco

E eeee COINroNa

- —e—s COFE

B | \HHH‘ | \HHH‘ 2\ \HHH‘ 3\
1 10 10 10

<dn./dn(0)>

core hadronization:
T =164MeV, up =0

statistical model fit
(horizontal black line)

A. Andronic et al.,
arXiv:1611.01347

T =156.5MeV, up = 0.7 MeV

thick lines = pp (7TeV)
thin lines = pPb (5TeV)
circles = pp (7TeV)
squares = pPb (5TeV)
stars = PbPb (2.76TeV)



11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes189

Omega to pion ratio

| EPOS3210 _ ALICE (black)

1 O j/.’i.. L’-N”W.'—.-.u.-

ratio to Tt
w

B COo+COo

I eeee 88ana thick lines = pp (7TeV)
-4 vee '_°_' thin lines = pPb (5TeV)

10 [ eteentl, .“.’. ®0g000%°%® | i\ jcs = PP (7TeV)

- e @ squares = pPb (5TeV)

- stars = PbPb (2.76TeV)

C vl 0] 2\ L] 3\

1 10 10 10

<dn./dn(0)>
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Kaon to pion ratio

ratio to Tt

10

10

EPOS 3.210

[\ ¢ o @ @ O O @@ @1 @ 1 @

o ALICE (black)

— full
co+co

eeee COrONA

—e—e COIE

L | HHH‘ |

1

10

10°

10°

<dn./dn(0)>

thick lines = pp (7TeV)
thin lines = pPb (5TeV)
circles = pp (7TeV)
squares = pPb (5TeV)
stars = PbPb (2.76TeV)
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Lambda to pion ratio

= | EPOS3210  ALICE (black)
ol0 A
B
10 -2 . full thick lines = pp (7TeV)
- + thin lines = pPb (5TeV)
- Co+COo circles = pp (7TeV)
n eeoee COIroONa squares = pPb (5TeV)
B —e—o COre stars = PbPb (2.76TeV)
vl ] 2\ R 3\
1 10 10 10

<dn./dn(0)>
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Xi to pion ratio

[ EPOS3210 _ ALICE (black)
210 -
e
2l thick lines = (7TeV)
10 3 - fUll thin lines = pII)3 (5TeV)
- co+co circles = pp (7TeV)
- eeoee COIroONa squares = pPb (5TeV)
- —e—e COIe stars = PbPb (2.76TeV)
EEERTI BRI 2\ WEEIm 3\
1 10 10 10

<dn./dn(0)>
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Ratios h/7w for h = p, K, A,Z,Q vs <‘$’(0)> :

Core and corona contributions separately
roughly constant

Difference (core - corona) increasing for
p—>K —>A—2—Q

=> inceasing slope
(not enough for =, (2)
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Average p; of protons

/\-0—'
o
v

~EPOS 3.210 ALICE (black)

— full
CO+CO

eeee COrONA

—e=e COI'E

1 10 10> 10°

<dn./dn(0)>

thin lines = pp (7TeV)
intermediate {)ines = pPb (5TeV)
thick lines = PbPb (2.76TeVVV)
circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76TeV)
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Average p; of Omegas

/\-0—'
o
v

- EPOS 3.210  ALICE (black]

— full
CO+CO
eeee COIONA
—‘0—0 core |
Lol el

10

10> 10°
<dn./dn(0)>

thin lines = p{) (7TeV)
intermediate lines = pPb (5TeV)
thick lines = PbPb (2.76TeVVV)

circles = pp (7TeV)
squares = pPb (5TeV)
stars = PbPb (2.76TeV)
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Average p; of lambdas

/\-0—'
o
v

EPOS 3.210  ALICE (black

.M

CNe— 7 ...... ........
— full
co+co
eeee COIONA
—e—e COlE
| \HHH‘ | \HHH‘ 2\ \HHH‘ 3\
1 10 10 10

<dn./dn(0)>

thin lines = p{) (7TeV)
intermediate lines = pPb (5TeV)
thick lines = PbPb (2.76TeVVV)

circles = pp (7TeV)
squares = pPb (5TeV)
stars = PbPb (2.76TeV)
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Average p; of kaons

/\-0—'
o
v

1

EPOS 3210 ALICE (black

— full
CO+CO

eeee COrONA

—e=e COI'E

10> 10°
<dn./dn(0)>

10

thin lines = p{) (7TeV)
intermediate lines = pPb (5TeV)
thick lines = PbPb (2.76TeVVV)

circles = pp (7TeV)
squares = pPb (5TeV)
stars = PbPb (2.76TeV)
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Average p; of K,p, A, =E,Q) vs <Z—Z(0)>:

Moderate increase of core contribution
(same for pp and pPb, similar to PbPb)

Strong increase of corona contribution
(stronger for pp than for pPb, much stronger than for PbPb)

Slope(pp) > slope(pPb) >> slope(PbPb)
K, w : pp-pPb splitting

The multiplicity dependence of the corona
contribution is crucial
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Very closely related to this discussion:

The multiplicity dependence
of charm production (D, J/VW,...)

The “ultimate tool” to test multiple
scattering (and the implementation

of Qs)
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EPOS 3 compared to ALICE data

= =
o ol

dny/dy(0) /<dn,/dy(0Py
a1

—nn ALI EPOS

- M CE full ’
- 12 = — K
72'4 ./.
—4-8 *./'/
812 % —ems o
~GeVic

1 2 3 4 5 6
dn,/dn(0) /<dn,/dn(0)>,5

hadronic cascade
on/off
has no effect

hydro on/off
has small effect
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EPOS 3 compared to RHIC data

m

=15 EPOS 3.210
S - Calculations:
§ | pp 200GeV data D mesons
E — STAR
%‘310 i J/IPsi Data: J/WV
= - p>4GeVic
= i Ve Increase
EC 5 j ..00000' stronger
%D - than at LHC

O;Lﬂ'\ ..H\\H\\\HH\HH\HH\

0

1 2 3 4 5 6
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Multiplicity at FB rapidity (LHC)
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Low
multi-
plicity
(LM)
A

High
multi-
plicity
(HM)
many
hard

’

on avg

few soft IP’s

IP = Pomeron

“Hardness”
increases
with Npom

(larger Q,)

(A) more IP’s, but less
hard

(B) fewer IP’s, but
harder

555
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LM — HM:

Pomerons get harder (larger Q)

— favors high pt or large masse production

in particular due to case B (fewer IP’s, but harder)
for highest pt bins !

Bigger effect at RHIC due to much narrower Np,,
distribution (harder IP’s are needed)

Smaller effect for —(FB) as multipl. variable

(case B is replaced by case C: fewer IP’s, but more covering
the FB rapidity range)



