Heavy Ion and cosmic ray generators

Klaus Werner

Contents

I Introduction	3
II Theoretical concepts	34
III Model overview	77
IV Multiple scattering in EPOS	92
V Collectivity in EPOS	136
VI Flow in small systems	160
VII Recent developments	176

I Introduction

Before 2010:

Proton-proton scattering: elementary, understood in terms of pQCD

Heavy ion collisions: Collective effects, formation of a (flowing) quark-gluon-plasma, macroscopic description

Since 2010: Incredibly interesting and unexpected pp and pPb results at the LHC (collective effect also in pp?)

Collective effects means

Primary interactions at t = 0

Secondary interactions
 formation of "matter" which expands
 collectively, like a fluid

In the following: An example of a EPOS simulation of expanding matter in pp scattering

Particle spectra affected by radial flow

Strong variation of shape with multiplicity

for kaon and even more for proton pt spectra

(flow like)

Λ/K_s versus pT (high compared to low multiplicity) in pPb (left) similar to PbPb (right)

Dihadrons: preferred $\Delta \phi = 0$ and $\Delta \phi = \pi$ (even for big $\Delta \eta$)

Initial "triangular" matter distribution:

Preferred expansion along $\phi = 0$, $\phi = \frac{2}{3}\pi$, and $\phi = \frac{4}{3}\pi$

 η_s -invariance

Dihadrons: preferred $\Delta \phi = 0$, and $\Delta \phi = \frac{2}{3}\pi$, and $\Delta \phi = \frac{4}{3}\pi$ (even for large $\Delta \eta$)

In general, superposition of several eccentricities ε_n ,

$$\varepsilon_n e^{in\psi_n^{PP}} = -\frac{\int dx dy \, r^2 e^{in\phi} e(x,y)}{\int dx dy \, r^2 e(x,y)}$$

Particle distribution characterized by harmonic flow coefficients

$$v_n e^{in\psi_n^{EP}} = \int d\phi \, e^{in\phi} f(\phi)$$

At $\phi = 0$: The **ridge**

(extended in η)

Awayside peak may originate from jets, not the ridge (for large $\Delta \eta$) Here, v_2 and v_3 non-zero $\propto 1 + 2v_2 \cos(2\phi) + 2v_3 \cos(3\phi)$

CMS: Ridges (in dihadron correlation functions) also seen in pp (left) and pPb (right)

Looks like flow !

vs p_t

ALICE: v2 versus pT: mass splitting (π, K, p) in pPb (left) similar to PbPb (right)

Typical flow result!

So : "Flow-like phenomena" are also seen in pp and pA, therefore:

II Theoretical concepts concerning primary interactions

providing initial conditions for secondary interactions

Poles and branch cuts

Even functions f(x) of a **real variable** x may need to be **continued into the complex plane**, to understand their properties.

Example
$$f(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \left(\frac{x}{2i}\right)^n$$
.

The radius of convergence is

$$\rho = \lim_{n \to \infty} |a_n|^{-1/n} = 2$$

Which is obvious, since f considered as function of a complex variable z, writes

$$f(z) = \frac{1}{1 - z/(2i)}$$

having a **pole** at z = 2i,

whereas f(x) has no singularity (for $x \in \mathbb{R}$)
Branch cuts

An example: The logarithm.

The exponential function defines a mapping ${\cal M}$

$$M: \quad \begin{array}{ll} \mathbb{C} \to \mathbb{C} \\ w \to z &= \exp(w) \end{array}$$

which is well defined in the whole complex plane.

Consider w = x + iy, with x fixed and y going from $-\pi$ to π .

(Trajectory γ going from $w_1 = x - i\pi$ to $w_2 = x + i\pi$)

The mapped trajectory
$$\gamma' = M(\gamma)$$
 is given as
 $z = \exp(w) = \exp(x) \exp(iy)$

=> A circle with start and end point $z_1 = z_2 = -e^x$

Doing the inverse mapping

$$M^{-1}: \ z \to w = \log(z),$$

we get for $z_1 = z_2$ two different values w_1 and $w_2 !!$

One has to define log in $\mathbb{C} - \mathbb{R}_{\leq 0}$ (branch). The negative real axis is called branch cut.

The discontinuity at $z = -e^x$:

$$\log(z+i\epsilon) - \log(z-i\epsilon) = 2\pi i$$

Cut diagrams

The scattering operator \hat{S} is defined via

$$|\psi(t=+\infty) = \hat{S} |\psi(t=-\infty)|$$

Unitarity relation $\hat{S}^{\dagger}\hat{S} = 1$ gives

$$1 = \langle i | \hat{S}^{\dagger} \hat{S} | i \rangle$$

= $\sum_{f} \langle i | \hat{S}^{\dagger} | f \rangle \langle f | \hat{S} | i \rangle$
= $\sum_{f} \langle f | \hat{S} | i \rangle^{*} \langle f | \hat{S} | i \rangle$

Expressed in terms of the S-matrix:

$$1 = \sum_{f} S_{fi}^* S_{fi}$$

Using
$$S_{fi} = \delta_{fi} + i(2\pi)^4 \delta(p_f - p_i) T_{fi}$$

dividing by $i(2\pi)^4\delta(0)$:

_ _

$$\frac{1}{i} (T_{ii} - T_{ii}^*) = \sum_f (2\pi)^4 \delta(p_f - p_i) |T_{fi}|^2$$

 $= 2w \sigma_{\rm tot}$

$$= 2s\sigma_{\rm tot}$$

The l.h.s. :

$$\frac{1}{i}\left(T_{ii} - T_{ii}^*\right) = 2\mathrm{Im}T$$

So we get the optical theorem

$$2\text{Im}T_{ii} = \sum_{f} (2\pi)^4 \delta(p_f - p_i) |T_{fi}|^2 = 2s \,\sigma_{\text{tot}}$$

Assume:

- \Box T_{ii} is Lorentz invariant \rightarrow use s, t
- \Box $T_{ii}(s,t)$ is an analytic function of s, with s considered as a complex variable (Hermitean analyticity)
- \Box $T_{ii}(s,t)$ is real on some part of the real axis

Using the Schwarz reflection principle, $T_{ii}(s,t)$ first defined for $\text{Im}s \ge 0$ can be continued in a unique fashion via $T_{ii}(s^*,t) = T_{ii}(s,t)^*$.

So:

$$\frac{1}{i} \left(T_{ii}(s,t) - T_{ii}(s,t)^* \right) = \frac{1}{i} \left(T_{ii}(s,t) - T_{ii}(s^*,t) \right)$$

Def:

disc
$$T = T_{ii}(s + i\epsilon, t) - T_{ii}(s - i\epsilon, t)$$

We have finally

$$\frac{1}{i} \operatorname{disc} T = (2\pi)^4 \delta(p_f - p_i) \sum_f |T_{fi}|^2 = 2s \,\sigma_{\text{tot}}$$

Interpretation: $\frac{1}{i} \operatorname{disc} T$ can be seen as a so-called "cut diagram", with modified Feynman rules, the "intermediate particles" are on mass shell.

Modified Feynman rules :

Draw a dashed line from top to bottom

 \Box Use "normal" Feynman rules to the left

- □ Use the complex conjugate expressions to the right
- \Box For lines crossing the cut: Replace propagators by mass shell conditions $2\pi\theta(p^0)\delta(p^2-m^2)$

Cutting a diagram representing **elastic** scattering

corresponds to **inelastic** scattering

Cutting diagrams is useful in case of substructures:

Precisely the multiple scattering structure in EPOS

Cut diagram = sum of products of cut/uncut subdiagrams => Gribov-Regge approach of multiple scattering

Parton evolution

A fast moving proton

cloud t≜ of gluons proton Ζ

emits successively partons (mainly gluons), quasireal (large gamma factors)

... which can be probed by a virtual photon (emitted from an electron)

What precisely the photon "sees" depends on two kinematic variables,

the **virtuality**

$$Q^2 = -k^2$$

and the Bjorken variable

$$x = \frac{Q^2}{2pk}$$

which probes partons with momentum fraction x. It determines also the **approximation scheme** to compute the parton cloud.

BFKL (Balitsky, Fadin, Kuraev, and Lipatov):

$$\frac{\partial \varphi(x, \boldsymbol{q})}{\partial \ln \frac{1}{x}} \frac{\alpha_s N_c}{\pi^2} \int d^2 k \, K(\boldsymbol{q}, \boldsymbol{k}) \varphi(x, \boldsymbol{k})$$

with
$$xg(x,Q^2) = \int_0^{Q^2} \frac{d^2k}{k^2} \varphi(x,\boldsymbol{k}),$$

DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli and Parisi):

$$\frac{\partial g(x,Q^2)}{\partial \ln q^2} = \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P(z) g(\frac{x}{z},Q^2)$$

Very large $\ln 1/x$: Saturation domain

Non-linear effects

Gluon from one cascade is absorbed by another one

Same evolution as in proton-photon (causality)

Different way of plotting the same reaction

inelastic scattering diagram

Corresponding cut diagram

referred to as "cut parton ladder"

= amplitude squared of the inelastic diagram

Corresponding elastic diagram

referred to as "(uncut) parton ladder"

Soft domain

Very small $\ln Q^2$: No perturbative treatment!

But one may use again the hypothesis of **Lorentz invariance** and **analyticity** of the T-matrix. One starts with a partial wave expansion of the T-matrix (Watson-Sommerfeld transform) :

$$T(t,s) = \sum_{j=0}^{\infty} (2j+1)\mathcal{T}(j,s)P_j(z)$$

with $t \propto z - 1$, $z = \cos \vartheta$, P_j : Legendre polynomials.

With $\alpha(s)$ being the rightmost pole of $\mathcal{T}(j,s)$ one gets for $t \to \infty$:

$$T(t,s) \propto t^{\alpha(s)}$$

and assuming crossing symmetry one gets the famous asymptotic result

$$T(s,t) \propto s^{\alpha(t)}$$

with the "Regge pole"

$$\alpha(t) = \alpha(0) + \alpha' t$$

Formulas (see Phys.Rept. 350 (2001) 93-289):

$$T_{\text{soft}}(\hat{s},t) = 8\pi s_0 i \gamma_{\text{Pom-parton}}^2 \left(\frac{\hat{s}}{s_0}\right)^{\alpha_{\text{soft}}(0)}$$

$$\times \exp(\lambda_{\text{soft}} t)$$
,

with $\lambda_{\rm soft} = 2R_{\rm Pom-parton}^2 + \alpha_{\rm soft}' \ln \frac{\hat{s}}{s_0}.$

Cut soft Pomeron (Schwarz reflection principle):

$$\frac{1}{i} \operatorname{disc} T_{\operatorname{soft}}(\hat{s}, t)$$

$$= \frac{1}{i} \left[T_{\text{soft}}(\hat{s} + i0, t) - T_{\text{soft}}(\hat{s} - i0, t) \right]$$

$$= 2 \operatorname{Im} T_{\text{soft}}(\hat{s}, t)$$

Interaction cross section,

$$\sigma_{\text{soft}}(\hat{s}) = \frac{1}{2\hat{s}} 2\text{Im} T_{\text{soft}}(\hat{s}, 0) ,$$

$$= 8\pi \gamma_{\text{part}}^2 \left(\frac{\hat{s}}{s_0}\right)^{\alpha_{\text{soft}}(0)-1},$$

using the optical theorem (with t = 0),

which grows faster than data

Space-time picture of semihard Pomeron

Hard cross section and amplitude (see Phys.Rept. 350 (2001) 93-289) :

$$\begin{aligned} \sigma_{\text{hard}}^{jk}(\hat{s}, Q_0^2) &= \frac{1}{2\hat{s}} 2\text{Im} \, T_{\text{hard}}^{jk}(\hat{s}, t = 0) \\ &= K \sum_{\substack{ml \ ml}} \int dx_B^+ dx_B^- dp_\perp^2 \frac{d\sigma_{\text{Born}}^{ml}}{dp_\perp^2} (x_B^+ x_B^- \hat{s}, p_\perp^2) \\ &\times E_{\text{QCD}}^{jm}(x_B^+, Q_0^2, M_F^2) \, E_{\text{QCD}}^{kl}(x_B^-, Q_0^2, M_F^2) \theta \left(M_F^2 - Q_0^2 \right), \end{aligned}$$

One knows (Lipativ, 86): amplitude is imaginary, and nearly independent on $t \Rightarrow$ (with $R_{hard}^2 \simeq 0$) :

$$T^{jk}_{\rm hard}(\hat{s},t) = i\hat{s}\,\sigma^{jk}_{\rm hard}(\hat{s},Q^2_0)\,\exp\left(R^2_{\rm hard}\,t\right)$$

Semihard amplitude :

$$iT_{\text{semihard}}(\hat{s}, t) = \sum_{jk} \int_0^1 \frac{dz^+}{z^+} \frac{dz^-}{z^-}$$
$$\times \text{Im} T^j_{\text{soft}}\left(\frac{s_0}{z^+}, t\right) \text{Im} T^k_{\text{soft}}\left(\frac{s_0}{z^-}, t\right) iT^{jk}_{\text{hard}}(z^+ z^- \hat{s}, t)$$

(valid for $s \to \infty$ and small parton virtualities except for the ones in the ladder)

Cross sections

(a) Exclusive : $a + b \rightarrow c + d$ (b) Total : $a+b \rightarrow X$ (sum of (a)) (c) Inclusive : $a + b \rightarrow c + X$ (weighted sum of (a))

There are simple formulas for inclusive cross sections (AGK cancellations), but one needs to go beyond when studying high multiplicity pp.
Consider multiple scattering amplitude

$$iT = \prod iT_{\rm P}$$

cross section: sum over all cuts.

For each cut Pom:

$$\frac{1}{i} \text{disc} T_{\rm P} = 2 \text{Im} T_{\rm P} \equiv G$$

For each uncut one:

 $iT_{\rm P} + \{iT_{\rm P}\}^* = i(i\,{\rm Im}T_{\rm P}) + \{i(i\,{\rm Im}T_{\rm P})\}^* = -2{\rm Im}T_{\rm P} \equiv -G$

Inclusive cross section: weighted sum over all cuts: The multiplicity for k cut Pomerons is kN, if N is the multiplicity per cut Pomeron.

Contribution to the inclusive cross section for n Pomerons:

$$\sigma_{\text{incl}}^{(n)} \propto \sum_{k=0}^{n} kN G^k \left(-G\right)^{n-k} \binom{n}{k} = 0 \text{ for } n > 1$$

Only n=1 contributes (single Pomeron) !!

AGK cancellations for n>1

simple diagram even in case of multiple scattering

corresponds to factorization:

 $\sigma_{
m incl} = F \otimes \sigma_{
m elem} \otimes F$

Kind of obvious that **factorization** should hold for inclusive cross sections, so

$$\pmb{\sigma}_{ ext{incl}} = \pmb{F} \otimes \pmb{\sigma}_{ ext{elem}} \otimes \pmb{F}$$

may be used as starting point, with *F* taken from DIS (photon-proton).

III Model overview

with contributions from T. Pierog, S. Ostapchenko, C. Bierlich, F. Riehn, P. Tribedy, A. Fedynitch

Models for min bias and high multiplicity pp

model	Gribov	Dipole	Facto	used	authors
	Regge		risation	for CR	
QGSJETII	Х			Х	Ostapchenko
EPOSLHC	X			Х	Pierog, Werner
EPOS3	Х				Werner, Pierog
DIPSY		Х			Lönnblad, Bierlich
IP-Glasma		Х			Tribedy, Schenke
SIBYLL			Х	Х	Engel, Riehn
DPMJETIII			Х	Х	Engel, Fedynitch
PYTHIA			Х		Sjostrand, Skands
HERWIG			Х		Marchesini, Webber

Models for high multipl pp, pA, AA including collective effects

ohttp://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions/

model	primary	secondary		
	scatterings	interactions		
EPOS	Gribov Regge	viscous	hadronic	
		hydrodynamical	cascade	
		expansion of QGP		
IP-Glasma	Dipole model	"		
Supersonic	Wounded	66	66	
	nucleon model			
AMPT	Minijets	partonic cascade	66	
	from Pythia			

Cascade means:

Successive scatterings $a + b \rightarrow c + d$ according to known cross sections

Gribov-Regge multiple scattering approach

EPOS, QGSJETII

S-Matrix based on Pomerons

Pomerons : Parton ladders (initial and final state radiation, DGLAP) + soft

Cutting rules to get inelastic cross sections.

Same principle for pp, pA, AA

more details later

Nonlinear effects in **QGSJET**

Pomeron-Pomeron coupling

- □ Summing of **all orders**
- \Box No energy conservation
- $\hfill \mbox{(in EPOS full energy conservation, but effective treatment of nonlinear effects)}$

Nonlinear effects in EPOS

Nonlinear effects (gluon fusion) taken care of via a saturation scale \mathcal{Q}_s

Saturation scale depends on Pomeron energy $(\sqrt{x^+x^-s})$ and the environment

Selfconsistent procedure within multiple scattering framework (more later)

Dipole approach

Initial state radiation in DIPSY (from Christian Bierlich)

Initial nucleon: Three dipoles

LL BFKL in *b*-space + corrections: A dipole (\vec{x}, \vec{y}) can emit a gluon at position \vec{z} with probability (*P*) per unit rapidity (*Y*)

$$\frac{dP}{dY} = \frac{\bar{\alpha}}{2\pi} d^2 \vec{z} \frac{(\vec{x} - \vec{y})^2}{(\vec{x} - \vec{z})^2 (\vec{z} - \vec{y})^2}$$

Multiple scattering

Multiple color exchange between dipoles i and jwith probabilities

$$\frac{\alpha_s^2}{4} \left[\log \left(\frac{(\vec{x}_i - \vec{y}_j)^2 (\vec{y}_i - \vec{x}_j)^2}{(\vec{x}_i - \vec{x}_j)^2 (\vec{y}_i - \vec{y}_j)^2} \right) \right]^2$$

-> kinky strings

- □ Two "leading" strings
- Additional strings from loops
- **No Remnants**

Many strings: Lund strings may overlap

=> color ropes (Larger eff. string tension)

Initial state in IP-Glasma (from Prithwish Tribedy)

IP-Sat dipole model (r_{\perp} =dipole size):

$$\frac{d\sigma}{d^2b} = 2 \left[1 - \exp\left(-F(r_{\perp}, x, b) \right], \ F \propto r_{\perp}^2 \alpha_s(\mu^2) x g(x, \mu^2) T(b) \right]$$

T(b) : Gaussian profile, $\mu^2=4/r_{\perp}^2+\mu_0^2,\,xg$: DGLAP evolution

Saturation scale Q_s defined via

$$F\left(r_{\perp}, x = \frac{2}{Q_s^2}, b\right) = \frac{1}{2}$$

IP-Glasma: Color charge squared for projectile A and target B :

 $g^2 \mu_A^2 = \sum_{nucleons} g^2 \mu_i^2$, with $g^2 \mu_i^2 \propto Q_s^2$ with Q_s^2 from IP-Sat model.

Multiple Scattering

Color charge density $\rho_{A/B}$

generated from Gaussian distribution with variance $g^2 \mu_A^2$ (contains DGLAP, saturation)

Current

 $J^
u = \delta^{
u \pm}
ho_{A/B}(x^{\mp}, x_{\perp})$

Field from $[D_{\mu}, F_{\mu\nu}] = J_{\nu}$ Numerical (lattice) solution, fields can be expressed in terms of initial ones: $A^{i} = A^{i}_{A} + A^{i}_{B}, A^{\eta} = \frac{ig}{2}[A^{i}_{A}, A^{i}_{B}]$

Multiple scattering:

Nonlinearity in terms of *A*: Infinite number of $g + g \rightarrow g$ processes

$\textbf{Fields} {\rightarrow} \textbf{Gluons} {\rightarrow} \textbf{Pythia strings}$

Models based on factorization

First step: $\sigma_{\rm jet}$ according to (A)

Second step: Multiple scattering scheme via eikonal formula

$$prob(n) = \frac{\left[\sigma_{jet}(s) T(s, b)\right]^n}{n!} \exp\left(-\sigma_{jet}(s) T(s, b)\right)$$

Multiple scattering in SIBYLL From F. Riehn

Multiple scattering via eikonal model with soft and hard component

 \Box No Remnants

 Further scatterings
 => strings between gluon pairs

Saturation scale from

Multiple scattering in Pythia

arXiv:1101.2599

Color reconnections

IV Multiple scattering in EPOS

in collaboration with T. Pierog, S. Ostapchenko, B. Guiot, G. Sophys, , M. Stefaniak

Parton based Gribov-Regge theory. By H.J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K. Werner. hep-ph/0007198. Published in Phys.Rept. 350 (2001) 93-289.

Parton emission starts long before the actual interaction (partons are very long-lived due to a large γ).

□ Soft pre-evolution

□ Subsequent parton emissions towards smaller *x*-values and larger virtualities (from both sides).

□ The final partons from either nucleon interact ("hard" collision).

Multiple scattering

Be T the elastic (pp,pA,AA) scattering T-matrix =>

$$2s\,\sigma_{
m tot}=rac{1}{
m i}{
m disc}\,T$$

Basic assumption : Multiple "Pomerons"

$$iT = \sum_k rac{1}{k!} \left\{ iT_{
m Pom} imes ... imes iT_{
m Pom}
ight\}$$

Example: 2 "Pomerons"

Evaluate

$$rac{1}{\mathrm{i}}\mathrm{disc}\left\{iT_{\mathrm{Pom}} imes... imes iT_{\mathrm{Pom}}
ight\}$$

using "cutting rules" :

A "cut" multi-Pomeron diagram amounts to the sum of all possible cuts

Example of two Pomerons

Using "Pomeron = parton ladder + soft", we have (first diagram)

Using a simplified notation for "cut" and "uncut" Pomeron

Complete result

(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

Dotted lines : Cut Pomerons (parton ladders)

$$\begin{split} \sigma^{\text{tot}} &= \int d^2 b \int \prod_{i=1}^A d^2 b_i^A \, dz_i^A \, \rho_A(\sqrt{(b_i^A)^2 + (z_i^A)^2}) \\ &\prod_{j=1}^B d^2 b_j^B \, dz_j^B \, \rho_B(\sqrt{(b_j^B)^2 + (z_j^B)^2}) \\ &\sum_{m_1 l_1} \dots \sum_{m_{AB} l_{AB}} (1 - \delta_{0\Sigma m_k}) \int \prod_{k=1}^{AB} \left(\prod_{\mu=1}^{m_k} dx_{k,\mu}^+ dx_{k,\mu}^- \prod_{\lambda=1}^{l_k} d\tilde{x}_{k,\lambda}^+ d\tilde{x}_{k,\lambda}^- \right) \bigg\{ \\ &\prod_{k=1}^{AB} \left(\frac{1}{m_k!} \frac{1}{l_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+, x_{k,\mu}^-, s, |\vec{b} + \vec{b}_{\pi(k)}^A - \vec{b}_{\tau(k)}^B|) \right) \\ &\prod_{\lambda=1}^{l_k} -G(\tilde{x}_{k,\lambda}^+, \tilde{x}_{k,\lambda}^-, s, |\vec{b} + \vec{b}_{\pi(k)}^A - \vec{b}_{\tau(k)}^B|) \bigg) \\ &\prod_{i=1}^A \left(1 - \sum_{\pi(k)=i} x_{k,\mu}^+ - \sum_{\pi(k)=i} \tilde{x}_{k,\lambda}^+ \right)^\alpha \prod_{j=1}^B \left(1 - \sum_{\tau(k)=j} x_{k,\mu}^- - \sum_{\tau(k)=j} \tilde{x}_{k,\lambda}^- \right)^\alpha \bigg\} \end{split}$$

Complicated with energy sharing included

(10,000,000-dimensional intergrals)

but doable

- Parameterizations for $G(x^+,x^-,s,b)$
- Analytical integrations
- Employing Markov chain techniques

Step 1:

- \Box We compute **partial cross sections** σ_K for particular configurations *K* via analytical integration
- $\Box K \text{ is a multi-dimensional variable}$ for example for double scattering in pp with two Pomerons $involved: <math>K = \{x_1^+, x_1^-, \vec{p}_{t1}, x_2^+, x_2^-, \vec{p}_{t2}\}$
- \Box Configurations K in AA scattering may be quite complex

Step 2:

The partial cross sections σ_K can be

□ interpreted as **probability distributions**,

□ enabling us to use Monte Carlo techniques to **generate configurations** *K*.

Since we are dealing with multidimensional probability distributions, we have to employ very sophisticated

Markov chain techniques

to generate configurations according to Ω .

Configurations via Markov chains (the heart of EPOS, see Phys. Rept. 350, 2001)

Consider a sequence of multidimensional random numbers

 x_1, x_2, x_3, \dots

with f_t being the law for x_t .

A homogeneous Markov chain is defined as

$$f_t(x) = \sum_{x'} f_{t-1}(x') p(x' \to x).$$

with $p(x' \to x)$ being the transition probability (or matrix). Normalization : $\sum_{x} p(x' \to x) = 1$.

Let f be the law for x_t . The law for x_{t+1} is $\sum_{a} f(a) p(a \to b).$

One defines an operator T (comme <u>Translation</u>)

$$Tf(b) = \sum_{a} f(a) p(a \to b).$$

So Tf is the law for x_{t+1} when f is the law for x_t .

A law is called stationary if Tf = f.

Theorem: If a stationary law Tf = f exists, then $T^k f_1$ converges towards f (which is unique) for any f_1 .

So to generate (multidimensional) random numbers according to some (given) law f,

 \Box one constructs a *T* such that Tf = f

 \Box and then iterates $T^k f_1$
One needs, for a given law f, to find a transition matrix p such that Tf = f

Sufficient condition (detailed balance):

$$f(a) p(a \to b) = f(b) p(b \to a) ,$$

Proof:

$$Tf(b) = \sum_{a} f(a) p(a \to b)$$

$$= \sum_{a} f(b) p(b \to a)$$

$$= f(b) \sum_{a} p(b \to a)$$

$$= f(b).$$

Metropolis alorithm

Definitions:

$$p_{ab} = p(a \to b),$$

$$f_a = f(a).$$

Take

$$p_{ab} = w_{ab} \, u_{ab} \, . \qquad (a \neq b) \, .$$

with

- w_{ab} : proposal matrix ($\sum_{b} w_{ab} = 1$)
- u_{ab} : acceptance matrix ($u_{ab} \leq 1$)

This is NOT the simple acceptance-rejection method!!

Detailed balance:

$$f_a p_{ab} = f_b p_{ba}$$

amounts to

$$f_a w_{ab} u_{ab} = f_b w_{ba} u_{ba} \,,$$

or

$$\frac{u_{ab}}{u_{ba}} = \frac{f_b}{f_a} \frac{w_{ba}}{w_{ab}} \,.$$

$$\frac{u_{ab}}{u_{ba}} = \frac{f_b}{f_a} \frac{w_{ba}}{w_{ab}} \,.$$

is solved by

$$u_{ab} = F\left(\frac{f_b}{f_a}\frac{w_{ba}}{w_{ab}}\right),\,$$

with a function F with

$$\frac{F(z)}{F(\frac{1}{z})} = z \,.$$

Proof: With
$$z \equiv \frac{f_b}{f_a} \frac{w_{ba}}{w_{ab}}$$
 one finds: $\frac{u_{ab}}{u_{ba}} = \frac{F(z)}{F(\frac{1}{z})} = z = \frac{f_b}{f_a} \frac{w_{ba}}{w_{ab}}.$

The *F* according to Metropolis is

 $F(z) = \min(z, 1) \, .$

One finds indeed

$$\frac{F(z)}{F(\frac{1}{z})} = \frac{\min(z,1)}{\min(\frac{1}{z},1)} = \left\{ \begin{array}{cc} z/1 & \text{pour} & z \le 1\\ 1/\frac{1}{z} & \text{pour} & z > 1 \end{array} \right\} = z \,.$$

So one proposes for each iteration a new configuation b according to some w_{ab} , and accepts it with probability

$$u_{ab} = \min\left(\frac{f_b}{f_a}\frac{w_{ba}}{w_{ab}}, 1\right).$$

Configuration lattice, define w_{ab} such that *b* changes w.r.t. *a* only on one lattice site (like Ising model Metropolis)

Long iterations, but allows to generate very complex configurations according to very complex laws.

Generating "configurations" is only half the story:

How do we obtain the corresponding partons which "make" the ladder, and finally the hadrons?

(for a given ladder, given momenta and flavors at the endpoints)

For particle production, only the cut Pomerons plays a role

the uncut ones have been summed over

Reminder: in order to compute the contribution of a cut Pomeron to a partial cross section, we sum over emitted partons, integrate over all momenta.

Consistency requires to use these same formulas to obtain probability distributions for the parton emissions (what we do).

Realization: big tables with pre-calculated cross sections, to be used via interpolation to generate partons according to iterative equations.

$$\begin{split} \sigma_{\text{hard}}^{ij}(\hat{s}, Q_1^2, Q_2^2) &= \sum_k \int \frac{dQ^2}{Q^2} \int d\xi \, \Delta^i(Q_1^2, Q^2) \, \frac{\alpha_s}{2\pi} \, P_i^k(\xi) \, \sigma_{\text{hard}}^{kj}(\xi \hat{s}, Q^2, Q_2^2) \\ &+ \sigma_{\text{ord}}^{ji}(\hat{s}, Q_2^2, Q_1^2) \end{split}$$

$$\begin{split} \sigma_{\rm ord}^{ij}(\hat{s},Q_1^2,Q_2^2) &= \sum_k \int \frac{dQ^2}{Q^2} \int d\xi \, \Delta^i(Q_1^2,Q^2) \, \frac{\alpha_s}{2\pi} \, P_i^k(\xi) \, \sigma_{\rm ord}^{kj}(\xi \hat{s},Q^2,Q_2^2) \\ &+ \sigma_{\rm Born}^{ij}(\hat{s},Q_1^2,Q_2^2) \end{split}$$

$$\begin{split} \sigma_{\rm Born}^{ij}(\hat{s},Q_1^2,Q_2^2) &= K \int dp_{\perp}^2 \frac{d\sigma_{\rm Born}^{ij}}{dp_{\perp}^2} (\hat{s},p_{\perp}^2) \\ &\times \quad \Delta^i(Q_1^2,M_{\rm F}^2) \, \Delta^j(Q_2^2,M_{\rm F}^2) \, \Theta \left(M_{\rm F}^2 - \max\left[Q_1^2,Q_2^2\right]\right) \end{split}$$

Probability of single emission:

$$prob(\xi, Q^2) = \frac{dQ^2}{Q^2} \Delta^i(Q_1^2, Q^2) \frac{\alpha_s}{2\pi} P_i^k(\xi) \,\sigma_{\text{hard}}^{kj}(\xi \hat{s}, Q^2, Q_2^2)$$

From partons to strings:

For t > 0, a (cut) Pomeron represents actually a (mainly) **longitudinal color field**,

where the ladder rungs (gluons) represent small transverse momentum components $^{(1)}$.

longi tudinal electric field

⁽¹⁾ Lund model idea, first e+e-, then generalized to pp, see also CGC

Realization:

One-dimensional character of the fields

=> classical string theory

(which does not use much more than some general symmetries)

□ Mapping: parton ladders -> kinky strings (parton momentum = kink)

Classical string evolution + decay via area law

In detail: The string surface is given as

$$x^{\mu}(\sigma,\tau) = x_0 + \frac{1}{2} \int_{\sigma-\tau}^{\sigma+\tau} g^{\mu}(\xi) d\xi,$$

so it is completely given in terms of some function $g^{\mu}(\xi)$ with

$$g^{\mu}(\sigma) = \dot{x}^{\mu}(\sigma, \tau = 0).$$

We consider only strings with a piecewise constant initial velocity g, which are called kinky strings.

 \Box This string is characterized by a sequence of σ intervals $[\sigma_k, \sigma_{k+1}]$, and the corresponding constant values (say v_k) of g in these intervals.

Such an interval with the corresponding constant value of g is referred to as "kink".

A parton ladder represents a **sequence of partons** of the type $q - g_{...} - g - \bar{q}$, with soft "end partons" q and \bar{q} , and hard inner gluons g.

The mapping "partons \rightarrow string" is done such that we **identify a parton sequence with a kinky string**

by requiring "parton = kink", with $\sigma_{k+1} - \sigma_k = ext{energy of parton } k$ and $v_k = ext{momentum of parton } k \ / E_k.$

What is really done (PR 232, pp 87-299, 1993, PR 350, pp 93-289, 2001):

A string represents a two-dimensional surface in Minkowski space

$$x = x(\sigma, \tau),$$

with σ being a space-like and τ a time-like parameter.

In order to obtain the equations of motion, we need a Lagrangian. It is obtained by demanding the invariance of the action with respect to gauge transformations. This way one finds the Lagrangian of Nambu-Goto:

$$L = -\kappa \sqrt{(x'\dot{x})^2 - x'^2 \dot{x}^2},$$

with "dot" and "prime" referring to the partial derivatives with respect to σ and τ , and with κ being the string tension.

With this Lagrangian we get the Euler-Lagrange equations of motion:

$$\frac{\partial}{\partial \tau} \frac{\partial L}{\partial \dot{x}_{\mu}} + \frac{\partial}{\partial \sigma} \frac{\partial L}{\partial x'_{\mu}} = 0.$$

We use the gauge fixing

$$x'^2 + \dot{x}^2 = 0$$
 and $x'\dot{x} = 0$,

which provides a very simple equation of motion, namely a wave equation,

$$\frac{\partial^2 x_{\mu}}{\partial \tau^2} - \frac{\partial^2 x_{\mu}}{\partial \sigma^2} = 0,$$

with the boundary conditions:

$$\partial x_{\mu}/\partial \sigma = 0, \ \sigma = 0, \pi.$$

The solution of the equation of motion (with initial extension zero) is

$$x^{\mu}(\sigma,\tau) = x_0 + \frac{1}{2} \left(\int_{\sigma-\tau}^{\sigma+\tau} g^{\mu}(\xi) d\xi \right),$$

where g is the initial velocity, $g(\sigma)=\dot{x}(\sigma,\tau)_{\tau=0}$.

Strings are classified according to the function g. Strings with piecewise constant g are called kinky strings, each segment being called kink, finally identified with perturbative partons.

In the following figure, we show the evolution of a string generated in electronpositron annihilation (4 internal kinks).

11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes129

Hadron production

is finally realized via string breaking, such that string fragments are identified with hadrons.

Hypothesis: the string breaks within an infinitesimal area dA on its surface with a probability which is proportional to this area,

 $dP = p_B dA$,

where p_B is the fundamental parameter of the procedure. ¹

¹Elegant realization, making use of the dynamics of strings with piecewise constant initial conditions.

A string break is realized via **quark-antiquark** or **diquark-antidiquark** pair production with probability

$$p_{i(j)} = \frac{1}{Z} \exp\left(-\pi \frac{M_{i(j)}^2}{\kappa}\right)$$

with

$$M_{ij} = M_i + M_j + c_i c_j M_0$$

Transverse momenta \vec{p}_t and $-\vec{p}_t$ are generated at each breaking, according to

$$f(k) \propto e^{-|\vec{p}_t|/2\bar{p}_t} \,, \tag{1}$$

with a parameter \bar{p}_t .

Jets:

Parton ladder = color flux tubes = kinky strings

(here no IS radiation, only hard process producing two gluons)

String segment = hadron. Close to "kink": jets

Check: jet production in pp at 7 TeV

Comparison with parton model calculation using CTEQ PDFs for pp at 7 TeV

V Collectivity in EPOS

Heavy ion collisions

or high energy & high multiplicity pp events:

□ the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently

Some string pieces will constitute bulk matter, others show up as jets

These are the same strings (all originating from hard processes at LHC) which constitute BOTH jets and bulk !!

again: single scattering => 2 color flux tubes

... two scatterings => 4 color flux tubes

... many scatterings (AA) => many color flux tubes

=> matter + escaping pieces (jets)

Core-corona procedure (for pp, pA, AA):

Pomeron => parton ladder => flux tube (kinky string)

String segments with high pt escape => **corona**, the others form the **core** = initial condition for hydro depending on the local string density

Core:

(we use α and β rather than σ and τ)

We split each string into a sequence of string segments, corresponding to widths $\delta\alpha$ and $\delta\beta$ in the string parameter space

Picture is schematic: the string extends well into the transverse dimension, correctly taken into account in the calculations

Energy momentum tensor and the flavor flow vector at some position x at initial proper time $\tau = \tau_0$:

$$T^{\mu\nu}(x) = \sum_{i} \frac{\delta p_{i}^{\mu} \delta p_{i}^{\nu}}{\delta p_{i}^{0}} g(x - x_{i}),$$

$$N_{q}^{\mu}(x) = \sum_{i} \frac{\delta p_{i}^{\mu}}{\delta p_{i}^{0}} q_{i} g(x - x_{i}),$$

 $q \in u, d, s$: net flavor content of the string segments

$$\delta p = \left\{ \frac{\partial X(\alpha,\beta)}{\partial \beta} \delta \alpha + \frac{\partial X(\alpha,\beta)}{\partial \alpha} \delta \beta \right\}: \text{ four-momenta of the segments.}$$

g: Gaussian smoothing kernel with a transverse width σ_\perp

The Lorentz transformation into the comoving frame provides the energy density ε and the flow velocity components v^i .

The evolution of the system for $\tau \ge \tau_0$ treated **macroscopicly**, solving the equations of **relativistic hydrodynamics**:

Three equations concerning conserved currents: $\partial_
u N_q^
u = 0$

with

$$N_q^\nu = n_q \, u^\nu$$

and n_q (q = u, d, s) representing (net) quark densities, u^{ν} is the velocity four vector.

The energy-momentum tensor $T^{\mu\nu}$ is

- \Box the flux of the μ th component of the momentum vector
- \Box across a surface with constant ν coordinate (using four-vectors)

T^{00} : Energy density $dE/dx^1 dx^2 dx^3$ (x⁰ const)

 T^{01} : Energy flux $dE/dx^{0}dx^{2}dx^{3}$ (x^{1} const)

T^{i0} : Momentum density

 T^{ij} : Momentum flux

The equation

$$\partial_
u T^{\mu
u} = 0$$

is very general, no need for thermal equilibrium, no need for particles.

The energy-momentum tensor is

the conserved Noether current

associated with **space-time translations**.

- \Box We have $4 + n_f$ equations, so we should express T in terms of 4 quantities (unknowns)
- \Box and/or find additional equations
- $\hfill\square$ which means additional assumptions

First approach: Ideal Fluid

In the local rest frame of a fluid cell:

$$\Box T^{00} = \varepsilon \text{ (energy density in LRF)}$$
$$\Box T^{0i} = 0 \text{ (no energy flow)}$$
$$\Box T^{0i} = 0 \text{ (no momenum in LRF)}$$
$$\Box T^{ij} = \delta_{ij} p \text{ (} p \text{ = isotropic pressure)}$$

In arbitrary frame:

$$T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu}$$

+ Equation of state $p = p(\varepsilon)$ of QGP from lQCD

=> 4 equations for 4 unknowns (ε , velocity)

Other way of writing *T*:

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - p \Delta^{\mu\nu}$$

with Δ being the projector \perp to u ($\Delta^{\mu\nu}u_{\nu}=0$):

$$\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$$

Including viscous effects, following Landau:

Navier Stokes equations (with shear and bulk viscosity η , ζ):

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - (p + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$
$$\pi^{\mu\nu} = \pi^{\mu\nu}_{NS} = 2\eta \,\nabla^{\langle\mu} u^{\nu\rangle},$$
$$\Pi = \Pi_{NS} = -\zeta \,\nabla_{\!\alpha} u^{\alpha}$$

$$A_{\langle\mu}B_{\nu\rangle} = \frac{1}{2} \left(\Delta^{\alpha}_{\mu}\Delta^{\beta}_{\nu} + \Delta^{\alpha}_{\nu}\Delta^{\beta}_{\mu} - \frac{2}{3}\Delta^{\alpha\beta}\Delta_{\mu\nu} \right) A_{\alpha}B_{\beta}, \, \nabla^{\mu} = \Delta^{\mu\nu}\partial_{\nu}$$

 $\pi^{\mu\nu},\,\Pi$ shear stress tensor, bulk pressure

NS does not work:

 $\hfill\square$ instabilities due to acausal behavior

Solution (Israel-Steward):

$$T^{\mu\nu} = \varepsilon u^{\mu}u^{\nu} - (p + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$
$$\pi^{\mu\nu} = \pi^{\mu\nu}_{NS} + \tau_{\pi} \left(-D\pi^{\mu\nu} + I^{\mu\nu}_{\pi}\right),$$
$$\Pi = \Pi_{NS} + \tau_{\Pi} \left(-D\Pi + I_{\Pi}\right)$$
with $D = u^{\mu}\partial_{\mu}$

Different choices for the *I*. Implemented in EPOS3 by Y. Karpenko: $I^{\mu\nu}_{\pi} = -\frac{4}{3}\pi^{\mu\nu}\partial_{\gamma}u^{\gamma} - [u^{\nu}\pi^{\mu\beta} + u^{\mu}\pi^{\nu\beta}]u^{\lambda}\partial_{\lambda}u_{\beta}, \quad I_{\Pi} = -\frac{4}{3}\Pi\partial_{\gamma}u^{\gamma}$

EPOS implementation (Yuri Karpenko)

Milne coordinates:

$$\eta = \frac{1}{2} \ln \frac{t+z}{t-z}$$
$$\tau = \sqrt{t^2 - z^2}$$

Metric tensor:

$$g^{\mu\nu} = \operatorname{diag}(1, -1, -1, -1/\tau^2).$$

Nonzero Christoffel symbols:

$$\Gamma^{\eta}_{\tau\eta} = \Gamma^{\eta}_{\eta\tau} = 1/\tau, \quad \Gamma^{\tau}_{\eta\eta} = \tau.$$

The hydrodynamic equations (using covariant drivatives):

$$\partial_{;\nu}T^{\mu\nu} = \partial_{\nu}T^{\mu\nu} + \Gamma^{\mu}_{\nu\lambda}T^{\nu\lambda} + \Gamma^{\nu}_{\nu\lambda}T^{\mu\lambda} = 0$$

Freeze out

happens at a hypersurface defined by $T = T_H$ (for given T_H).

Hyper-surface: $x^{\mu} = x^{\mu}(\tau, \varphi, \eta)$: $x^{0} = \tau \cosh \eta, \ x^{1} = r \cos \varphi, \ x^{2} = r \sin \varphi, \ x^{3} = \tau \sinh \eta,$ with $r = r(\tau, \varphi, \eta)$.

The hypersurface element is

$$d\Sigma_{\mu} = \varepsilon_{\mu\nu\kappa\lambda} \frac{\partial x^{\nu}}{\partial \tau} \frac{\partial x^{\kappa}}{\partial \varphi} \frac{\partial x^{\lambda}}{\partial \eta} d\tau d\varphi d\eta,$$

(with $\varepsilon^{0123} = 1$)

Computing the derivatives, one gets:

$$d\Sigma_{0} = \left\{ -r\frac{\partial r}{\partial \tau}\tau \cosh \eta + r\frac{\partial r}{\partial \eta} \sinh \eta \right\} d\tau d\varphi d\eta,$$

$$d\Sigma_{1} = \left\{ \frac{\partial r}{\partial \varphi}\tau \sin \varphi + r\tau \cos \varphi \right\} d\tau d\varphi d\eta,$$

$$d\Sigma_{2} = \left\{ -\frac{\partial r}{\partial \varphi}\tau \cos \varphi + r\tau \sin \varphi \right\} d\tau d\varphi d\eta,$$

$$d\Sigma_{3} = \left\{ r\frac{\partial r}{\partial \tau}\tau \sinh \eta - r\frac{\partial r}{\partial \eta} \cosh \eta \right\} d\tau d\varphi d\eta.$$

Cooper-Frye hadronization amounts to calculating

$$E\frac{dn}{d^3p} = \int d\Sigma_{\mu} p^{\mu} f(up),$$

with u being the flow four-velocity in the global frame, related to Milne fram via

$$\begin{array}{rcl} u^0 &=& \tilde{u}^{\,0}\cosh\eta + \tilde{u}^{\,3}\sinh\eta\,,\\ u^1 &=& \tilde{u}^{\,1}\,,\\ u^2 &=& \tilde{u}^{\,2}\,,\\ u^3 &=& \tilde{u}^{\,0}\sinh\eta + \tilde{u}^{\,3}\cosh\eta\,. \end{array}$$

Similarly *p* expressed in terms of \tilde{p} in the Milne frame.

f is the Bose-Einstein or Fermi-Dirac distribution.

Hadronic afterburner: UrQMD

After "hadronization" hadrons follow straight and may still interact via

$$h_1 + h_2 \rightarrow \sum_j h'_j$$

We use "UrQMD".

M. Bleicher et al., J. Phys. G25 (1999) 1859;

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev. C78 (2008) 044901

VI Flow in small systems

=> comparing models

with / without collectivity built in

pPb results (more results: arXiv:1312.1233)

We will compare EPOS3 with data and also with

EPOS LHC

LHC tune of EPOS1.99, : same GR, but uses **parameterized flow** T. Pierog et al, arXiv:1306.5413

AMPT Parton + hadron cascade -> some collectivity Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang and S. Pal, Phys. Rev. C 72, 064901 (2005).

QGSJET GR approach, **no flow** S. Ostapchenko, Phys. Rev. D74 (2006) 014026

CMS: Multiplicity dependence of pion, kaon, proton pt spectra

CMS, arXiv:1307.3442

We plot 4 centrality classes: $\left< N_{\rm trk}^{\rm offline} \right>$ = 8, 84, 160, 235 (in $|\eta| < 2.4$)

Multiplicity = centrality measure

Little change with multiplicity for pions

Kaon spectra change with multiplicity

Strong variation of proton spectra => flow helps

ALICE: compare pt spectra for identified particles in different multiplicity classes: 0-5%,...,60-80%

(in $2.8 < \eta_{\text{lab}} < 5.1$) From R. Preghenella, ALICE, talk Trento workshop 2013

Useful : ratios (K/pi, p/pi...)

Significant variation of lambda/K – like in PbPb

No multiplicity dependence (not trivial to get the peripheral right)

Significant multiplicity dependence. Flow helps

11th MCnet School July 2017 Lund # Klaus Werner # Subatech, Nantes170

ALICE, arXiv:1212.2001, arXiv:1307.3237

Central - peripheral (to get rid of jets)

Identified particle v2

mass splitting, as in PbPb !!!

pPb in EPOS3:

Pomerons (number and positions) characterize geometry (\bar{P} . number \propto multiplicity) random 1.5 y (fm) pPb 5TeV n = 1.00azimuthal 1 asymmetry 0.5 => asymmetric flow 0 seen at higher pt -0.5for heavier ptls -1

-1.5 -1 -0.5 0 0.5 1 1.5 x (fm)

v2 for π , K, p clearly differ

mass splitting, due to flow

VII Recent developments

(Saturation, strangeness and charm enhancement with multiplicity)

Non-linear effects

Computing the expressions G for single Pomerons: A cutoff Q_0 is needed (for the DGLAP integrals).

Taking Q_0 constant leads to a power law increase of cross sections vs energy (=> wrong)

because non-linear effects like gluon fusion are not taken into account

Solution: Instead of a constant Q_0 , use a dynamical saturation scale for each Pomeron:

$$oldsymbol{Q}_s = oldsymbol{Q}_s(N_{{
m I\!P}},s_{{
m I\!P}})$$

with

 $N_{\rm IP}$ = number of Pomerons connected to a given Pomeron (whose probability distribution depends on Q_s)

 $s_{\mathbb{IP}}$ = energy of considered Pomeron

We get $Q_s(N_{\mathbb{P}}, s_{\mathbb{P}})$ from fitting

- \Box the energy dependence of elementary quantities ($\sigma_{\rm tot}$, $\sigma_{\rm el}$, $\sigma_{\rm SD}$, $dn^{\rm ch}/d\eta(0)$) for pp
- \Box the multiplicity dependence of dn^{π}/dp_t at large p_t for pp at 7 TeV

We find

$$Q_s \propto \sqrt{N_{
m I\!P}}~ imes~(s_{
m I\!P})^{0.30}$$

CGC for AA:

 $Q_s \propto N_{\rm part} \, \times \, (1/x)^{0.30}$

=> Strong increase of $\langle p_t \rangle$ with multiplicity

These saturation effects concern the corona!

What about multiplicity dependence of core-corona separation ?

□ First check particle ratios

Then mean pt vs multiplicity

(core-corona+saturation)

We compare simulations to ALICE data

Particle ratios to pions vs $\left\langle \frac{dn_{ch}}{dn}(0) \right\rangle$

circles = pp (7TeV)

squares = pPb (5TeV) stars = PbPb (2.76TeV)

Refs: next slide

Mean
$$p_t$$
 vs $\left< rac{dn_{
m ch}}{d\eta}(0) \right>$

circles = pp (7TeV)

squares = pPb (5TeV) stars = PbPb (2.76TeV)

Data partly collected by A. G. Knospe Refs:

<dNch/deta> in Pb+Pb: Phys. Rev. Lett. 106 032301 (2011) pi+-, K+-, and (anti)protons in Pb+Pb: Phys. Rev. C 88 044910 (2013)

Lambda in Pb+Pb: Phys. Rev. Lett. 111 222301 (2013) XI- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) pl+-, K+-, (anti)protons, and Lambda in p+Pb: Phys. Lett. B 728 25-38 (2014)

<dNch/deta> in p+Pb: Eur. Phys. J. C 76 245 (2016)
XI- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016)
<dNch/deta> in p+p 7 TeV: Eur. Phys. J. C 68 345-354 (2010)

pi+-, K+-, and (anti)protons in p+p 7 TeV: Eur. Phys. J. C 75 226 (2015)

Xi- and Omega in p+p 7 TeV: Phys. Lett. B 712 309 (2012) and data points from Rafael Derradi de Souza, SQM2016

D or J/ Ψ multiplicity vs $\frac{dn_{ch}}{d\eta}(0)$ in pp

strongly nonlinear increase

Core-corona picture in EPOS

Gribov-Regge approach => (Many) kinky strings => core/corona separation (based on string segments)

peripheral AA high mult pp

low mult pp

core => hydro => statistical decay ($\mu = 0$) corona => string decay

Pion yields: core / corona contribution

Proton to pion ratio

Omega to pion ratio

Kaon to pion ratio

Lambda to pion ratio

Xi to pion ratio

Ratios
$$h/\pi$$
 for $h=p,K,\Lambda,\Xi,\Omega$ vs $\left\langle rac{dn}{d\eta}(0)
ight
angle$:

Core and corona contributions separately roughly constant

Difference (core - corona) increasing for $p \to K \to \Lambda \to \Xi \to \Omega$

=> inceasing slope (not enough for Ξ , Ω)

Average p_t of protons

Average p_t of Omegas

Average p_t of lambdas

Average p_t of kaons

Average
$$p_t$$
 of $K, p, \Lambda, \Xi, \Omega$ vs $\left< rac{dn}{d\eta} (0) \right>$:

Moderate increase of core contribution (same for pp and pPb, similar to PbPb)

Strong increase of corona contribution (stronger for pp than for pPb, much stronger than for PbPb)

Slope(pp) > slope(pPb) >> slope(PbPb)

K, π : **pp-pPb splitting**

The multiplicity dependence of the corona contribution is crucial

Very closely related to this discussion:

The multiplicity dependence of charm production (D, J/Ψ ,...)

The "ultimate tool" to test multiple scattering (and the implementation of \mathbf{Q}_S)

EPOS 3 compared to ALICE data

hadronic cascade on/off has no effect

hydro on/off has small effect

EPOS 3 compared to RHIC data

Calculations: D mesons

Data: J/Ψ

Increase stronger than at LHC

Multiplicity at FB rapidity (LHC)

 $LM \rightarrow HM$:

Pomerons get harder (larger Q_s)

 \rightarrow favors high pt or large masse production

in particular due to case B (fewer P's, but harder) for highest pt bins !

Bigger effect at RHIC due to much narrower $N_{\rm Pom}$ distribution (harder **P**'s are needed)

Smaller effect for $\frac{dn}{d\eta}(FB)$ as multipl. variable (case B is replaced by case C: fewer **P**'s, but more covering the FB rapidity range)