
RECAST use-
case and demo
Lukas Heinrich  

CAP/RECAST/DASPOS Workshop

Introduction

Three pillars

2

Re-useCaptureDescribe

Describe and Capture is about ingesting information into CAP about analyses.

The Re-use is pillar about extracting information from CAP and utilize that information in new
scientific contexts.

If we aim for re-use it informs how describe and capture information.

Reinterpretation/RECAST: running new signal samples through analysis, compare to stored data,
background

original analysis (w.r.t model A) original analysis (recast to model B)

Significant demand from outside of collaboration, since published analysis have good efficiency for many
models, not just the ones in the paper. Theorists are trying to build own tools, but can only approximate.

To do it properly, we need two ingredients:

1. 1 new fully simulated/reconstructed signal sample
• sample needs to go through an existing chain of AMI tags e.g. s2608_r7772_r7676_p2666
• sample size usually not too large, since analysis have good efficiency (i.e. 50-100k events/sample)

2. Preserved analysis code / workflow
• takes over at ntuple level (i.e. derivations) runs event selection, downstream trfs, stat. evaluation

etc.

recast

Signal Region Signal Region

result = fanalysis(data|model)

observable distributions,
confidence intervals 

on model parameters
collision data from LHC detector

model hypothesis 
(SM, many SUSY models,

etc..)

reconstruction, event
selection, stat. evaluation

Analysis Ingredients:
↪measurement of rates and distribution of pp collision observables
↪estimation of expected measurements under model hypotheses
↪statistical evaluation, interval estimation on model parameters

result = fanalysis(data|model)

observable distributions,
confidence intervals 

on model parameters
collision data from LHC detector

model hypothesis 
(SM, many SUSY models,

etc..)

reconstruction, event
selection, stat. evaluation

HepData UFO/SLHA  
(HepData?)

DPHEP 
CERN OpenData

CAP
DASPOS

Analysis should be preserve the analysis in a parametrized form, not only its
concrete application, separately from its application on given dataset.

fanalysis(·), data, model

Given a parametrized preservation of an analysis (even w/ fixed data), we gain
ability to extract new results using existing resources.

fa(data|model1)

fb(data|model1)

fc(data|model1)

fa(data|model2)

fb(data|model2)

fc(data|model2)

Reinterpretation of Single Analysis under multiple models

Combination
of multiple  
analyses w.r.t.
one model

(increased stat. power)

Introduction
Backend uses cluster of ~100VCPU on cluster of worker nodes to execute analysis workflows.

Backend runs on yadage workflow engine that build directed acyclic graphs (DAG) of tasks with software
preserved and shipped via Docker Containers. Workflows are defined via JSON/YAML description language.
Can (and already are for some examples) stored in CERN Analysis Preservation Portal

ATLAS Run2 Full Chain + Derivation ATLAS Run1 Analysis

Pheno Tools (CheckMATE)

7

Introduction
RECAST is an old idea to formalize / streamline the process. Let interested parties formulate new models /
parameter point grids for existing analyses, have centralized backend that allows to re-run analysis pipeline
without additional workload on original analysis team.
• capture analysis code / during development, when team knows best how to run it
• capture workflow logic of separate parts (selection / fit)

Result: allows us to run newly generated signals automatically using semi-automated framework.

Result for new Signal

8

Introduction

Analysis Preservation: two-step process

9

Modern HEP analysis:

• Multiple steps/code-bases, possibly developed by independent teams, with differing software requirements.
Example: one team developing the event selection, another team developing the statistical analysis

Need to capture:

1.Individual processing steps  
 
 
 

2.How to connect these steps

• code bases
• software environments
• identify binaries, scripts in code base
• templates how to run binaries (semantic description of arguments, naming etc..)
• description of step output, what are the relevant data fragments

• How to wire individual steps together
• What outputs of which steps, are used as inputs for other steps, …

For semi-automation, the information needs to detailed, but is also most closely related to day to day work of
the physicists.

Developed flexible JSON Schemas (diana-hep/yadage-schemas) and Implementation to describe both parts:

1.Individual processing steps  
 
 
 

2.How to connect these steps

Introduction

Analysis Preservation: two-step process

10

diana-hep/packtivity

diana-hep/yadage

https://github.com/diana-hep/yadage-schemas
https://github.com/diana-hep/yadage
https://github.com/diana-hep/yadage

Introduction

diana-hep/packtivity

parametrized process:
template job from which we can produce concrete job
template: “./DelphesHepMC <input file> <output file>”
concrete: “./DelphesHepMC /input/file/path.hepmc /output/file.root”

environment:
description of computing env in which above job can run. 
Multiple options, promising: Linux Containers (investigating Umbrella, etc)

publisher:
recipe how to extract parsable result data after job completion
e.g. globbing files in a work directory, just forwarding input parameters 
that refer to output data etc…

https://github.com/diana-hep/yadage

diana-hep/packtivity

Case Study: ATLAS Run-2 Analysis Event Selection Code (Multi-B-jet
analysis, publication ATLAS-CONF-2016-052

• Code developed in GitLab repository
• using own C++ framework on top of ATLAS 

analysis releases taken from CVMFS
• Tested using GitLab CI continuous integration within Docker 

environment
• build Docker image (including custom code, excluding cvmfs), 

same build scripts as are used in CI builds..
• Runs Event Selection on ATLAS centrally produced DxAOD  

derivation files, writes out HistFitter ROOT files

https://github.com/diana-hep/yadage

diana-hep/packtivity

A lot of the work is already done during the development of the analysis, adapts as analysis team adapts
(framwork switches, code version etc…)

• Code Capture in Docker images
• Build scripts
• etc..

To capture semantically, only need small amount of information how to use the code on a given input file (in
this case a grid dataset streamed via XrootD). Can be prepared/tested during development, fixed at
publication time.

https://github.com/diana-hep/yadage

diana-hep/packtivity

← 
uniquely specify code base  
list external requirements: CVMFS, X509  
authentication to get grid access
← 
semantic output of this step is: all root files 
in work directory after event selection has run  
{

“histfitterfile”: [“dynamicfilename.root”]
}

https://github.com/diana-hep/yadage

diana-hep/packtivity

Case Study: LHCb Lb2LcD0K analysis

• Code developed in GitLab repository
• I literally don’t know anything about the code base :) ask Sebastian
• Tested using GitLab CI continuous integration, does not need CVMFS
• lots of custom software requirements, from user packages to PyPI packages
• Runs complex data pipeline using external workflow tool: snakemake

https://github.com/diana-hep/yadage

diana-hep/packtivity

Case Study: LHCb Lb2LcD0K analysis
• To re-run it, just need Docker image, and Kerberos Access to LHCb Data to read in  

centrally produces data
• (re-)produces publication quality plots
• same scripts as in CI builds, so developed during analysis, not additional work at end

of analysis lifecycle

{
“plots”: [“long”,”list”,”of”,”pdf”,”files”]

}

Semantic Step Output: List of Plots in PDF format

https://github.com/diana-hep/yadage

diana-hep/packtivity

Comparison to AMI
• Very similar kind of information stored
• AMI makes some implicit assumption on software environment (not a complete VM/container image but 

understanding that release is setup on a machine that
• parameters of transforms not completely specified, since they can be used in many use-cases
• possible scenario: generate a given packtivity YAML/JSON based on AMI data on the fly for specific  

transform that is needed  

• custom “data prod/AMI” environment_type and process_types (i.e. not Docker based, not scripts) from 
which a specific transform can be re-run when requested (e.g. even custom machines with legacy hardware)

https://github.com/diana-hep/yadage

diana-hep/yadage

• Packtivities are like simple transforms that take JSON → JSON with side-effects on external storage
• Workflow: a prescription how to chain these JSON APIs, link outputs to inputs etc…

pars

Job

environ-
ment

process

State

result

publisher
State’

Backend

ac
tiv
ity

JSON State

State’JSON

packtivity =

Natural Data Model: directed acyclic graphs (DAGs)
• nodes: individual steps
• edges: dependency relations

Two place where parametrization enter:

1. individual steps parametrized: “packtivities”
2. Parametrized Graph Topology:

• variable number of created files during  
execution,

• conditional choices (if/else)/flags 
do enable/disable steps, e.g. 
run systematics / not

Par. Set 1 Par. Set 2

https://github.com/diana-hep/yadage

19

• Short YAML File to describe workflow template
• References earlier, separately developed packtivity step YAML files
• Fit Step in this case reads Background and Data files from fixed EOS location  

can be adapted to point to ingested, long-term archived EOS location managed by CAP

diana-hep/yadage

https://github.com/diana-hep/yadage

20

Preserving the Mess:  
this is the fit script, more or less copy, pasted from E-Mail sent to me describing how to run the Fit (same Run-
II analysis as Event Selection
but completely different team, other ROOT version, etc…)

diana-hep/yadage

https://github.com/diana-hep/yadage

diana-hep/yadage

yadage features 

• dynamic, parametrized (i.e. not a fixed pipeline)
• multiple backends (depending on environment types and

external resources), Docker on laptop, on Kubernetes on Google
Container Engine, Amazon, Rackspace, etc….

• independently composable(workflows can reference other
workflows, but no coordination necessary (target name collisions
etc…) each workflow sandboxed. Can build e.g.

• no DSL, pure JSON schemas, standard JSON technologies
(JSON references, JSON pointers, jq query, JSONPath…)

• i.e. indexable and searchable
• machine readable and writable (i.e. automated

compositions)
• natively fits into CAP

• distributed computing (many hosts writing to distributed
storage, just JSON message passing)

https://github.com/diana-hep/yadage

RECAST usage of CAP / yadage

Current Infrastructure RECAST Frontend

https://recast-frontend-beta.cern.chRECAST Control
Center

https://recast-control.cern.ch • Interface for Theorists, i.e. ppl
outside of collaborations to submit
requests

• Describe Request, upload
necessary data fragments (Model
files, parameter files, pre-generated
events in LHE format)

• Authentication via ORCID  

• Interface for Collaboration members
• Review (accept/reject) Requests
• Submit Workflow Processing  
 

• Cluster that can runs workflows of
container workloads 

Worker Worker Worker Worker

Worker Worker Worker Worker

Worker Worker Worker Worker

Worker Worker Worker Worker

Worker Worker Worker Worker

Worker Worker Worker Worker

Worker Worker Worker Worker

Worker Worker Worker Worker

Worker Worker Worker Worker

when approved & reviewed  
upload results to frontend

https://recast-frontend-beta.cern.ch
http://recast-control.cern.ch

Satisfying Multiple Interfaces
1. RECAST Request <-> Event Generation Interface

• multiple options: LHE files, HepMC files, SLHA Parameter
Cards, etc, may depend on downstream, (internally e..g ATLAS
JobOptions, EVNT files) 
 
 
 
 

2. EvGen / Simulation <-> Analysis Interface
• link between central production and analysis

 
 
 
 
 

3. Analysis Interface <-> RECAST Results
• how to extract standard limit results (CLs values, p-values, etc..)

RECAST request

RECAST response

Satisfying Multiple Interfaces

LHE Files + Xsec

Pythia + Delphes

Delphes Analysis 
+ 

Custom FIt

RECAST result

LHE Files + Xsec

Pythia

CheckMate

RECAST result

LHE Files + Xsec

Pythia

Rivet

RECAST result

LHE Files + Xsec

ATLAS Full Chain
sim + reco +

derivation

Original DxAOD
based Analysis 

+ 
Fit

RECAST result

analysis workflow 1evgen/sim workflow A

analysis workflow 2evgen/sim workflow A

analysis workflow 3evgen/sim workflow A

analysis workflow 4evgen/sim workflow B

analysis workflow 5evgen/sim workflow B

analysis workflow 6evgen/sim workflow C

publication 1

publication 2

publication3

• A Publication can have multiple analysis workflows
• Example 1: many SM analyses publish independent

Rivet implementation on top of original analysis code
• Example 2: RECAST specific workflow that does not

re-run background or data sample, just new signal

• RECAST keeps a library of analysis workflows and
their required upstream interfaces (what’s the required
input to which we attach)

• Can generate dynamically which combinations are
possible

