
ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Recent ALICE user experience / wishes
for ROOT-IO

Sandro Wenzel

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Outline

1. “Difficulties” with ROOT-IO in the context of
RUN3 developments (ALICE O2 project)

2. An improved TClonesArray

3. IO feature request motivated from “ObjCmp” - a
tool to compare ROOT serialized objects

2

Presenting a collection of things we have come across recently ...

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel 3

RECENT USER EXPERIENCE WITH
ROOT IO

• Our experience with ROOT IO is very good in general!
• “Good” can definitely be considered the general

“background” …
• Some unexpected “issues” emerged as the “signal”

on which I would like to report …
– Some of the things mentioned probably a misuse of ROOT

on our side

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Context

4

MCTracks

ITSHits

TPCSector0Hits

Element of TClonesArray
• Must derive from TObject
• Usually corresponds to one data element (hit)

Element of TClonesArray as wrapper to a container of
elemental things
• Group TPC hits per track+sector;
• The elemental things do not need to derive from TObject

Event1 Event2

Branch entry = TClonesArray of simulation data objects

Data organisation/model
for simulation changes
from Run2 (AliRoot) to
Run3 (based on FairRoot)

• Will store (sim) data
objects in branches,
with entries
corresponding to
events or continous
time ranges

• Each entry is a
TClonesArray!

• Elements of the
TClonesArray can have
other containers

• Entries can be very
large (TPC)

Using ROOT6-08-patches

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Concern 1: IO of std::vector and co?

• We use, e.g., std::vector containers inside objects (in a TClonesArray)
– std::vector<Hit>

• Observed that IO takes considerable CPU, caused by iterating over
the vector using TGenCollectionProxy + virtual functions

• Effect vanishes using
– Hit *mHits; //[Size]

5

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Concern 1: IO of std::vector and co?

• We use, e.g., std::vector containers inside objects (in a TClonesArray)
– std::vector<Hit>

• Observed that IO takes considerable CPU, caused by iterating over
the vector using TGenCollectionProxy + virtual functions

• Effect vanishes using
– Hit *mHits; //[Size]

• Feature request: Fast IO! In particular, of course, that “IO of
std::containers should be as fast as the C-variants”

6

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Concern 2: O(N^2) scaling while TTree::Drawing()

• Observed a very slow response with TTree::Draw() in a
context, where

– Have many data objects in a TClonesArray
– Each individual data object holds a small variable sized vector
std::vector<int> mMCLabels

• Drawing on mMCLabels takes “infinitely look”
– The calculation of the right index (happening in TTreeFormula)

to access the data suffers from a scaling problem
– Probably only visible in certain circumstances

• Problem already discussed with P. Canal. A pull request
fixing the scaling problem will be available soon.

7

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Concern 3: Memory hoarding bug and testing

• Observed a memory “hoarding” problem, where ROOT IO triggered a
4x multiplication of the allocated memory, essentially preventing
us from simulating very large events

8

• Now fixed in v6-08-patches and others

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Concern 3: Memory hoarding bugs and testing

• Observed a memory “hoarding” problem, where ROOT IO triggered a
4x multiplication of the allocated memory, essentially preventing
us from simulating very large events

9

• Now fixed in v6-08-patches and others

• What can we learn from these
lessons?

• Importance to enhance testing!
• Enlarged test suites for IO
• Monitor CPU + memory consumption

for typical use cases and install alarm
• Backport important fixes to all

supported releases

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel 10

Feature request on
“TClonesArrays”

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Evolution of TClonesArray

• TClonesArray is a nice feature of ROOT
– Memory managed container, with particular strengths for large

objects
– Nice ROOT IO integration (constructor/deconstructor skipping;

object reuse) as the basis for good speed and user convenience
– Used a lot in FairRoot (i.e., the “Absorb” functionality) and

currently central to our simulation data model

11

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Evolution of TClonesArray

• TClonesArray is a nice feature of ROOT
– Memory managed container, with particular strengths for large

objects
– Nice ROOT IO integration (constructor/deconstructor skipping;

object reuse) as the basis for good speed and user convenience
– Used a lot in FairRoot (i.e., the “Absorb” functionality) and

currently central to our simulation data model
• But:

– not type safe ... (awkward code)
– requires elements to be a TObject, which can lead to

considerable memory overhead
– somewhat weird API (with unexpected side-effects) and rather

ancient look and feel
– sorting not competitive with stl (virtual functions vs templates)

12

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Evolution of TClonesArray (cont)

• Given the important role this container plays for us, we
would be interested having a modernized version
keeping all the benefits while addressing the current
shortcomings

– type awareness (templated); “no TObjects”; stl like; …; Same
good ROOT IO integration !!

• Some work was already invested on this and a first
prototype is available

– TManagedVector
• Hope to get more people interested and to advance the

discussions

13

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel 14

IO feature request
motivated from “ObjCmp”

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Motivation

• Most of our data is encapsulated in C++ objects
and serialised to disc using ROOT I/O …

• We want to test for bitwise compatibility of
objects sitting in different root files …
– MUCH more complicated than comparing the file in

binary mode (because of timestamps and other
information that ROOT adds)!!

• We want to obtain a measure how much objects
in different root files differ…

15

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Idea using introspection

• Use introspection capabilities of ROOT in order
to loop and hierarchically navigate through data
members of C++ objects
– publish encountered (leaf) data to in-memory stores/map(s)
– use this data-store to easily retrieve differences

16

object1 in file1.root

object2 in file2.root

Common stores/maps of
data-path-identifier : pod value

navigate data
members and
publish to

navigate data
members and
publish to

in principle one store per basic data type
(float, double, char, …)

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

How it looks like : Simple Printing

17

Track.mId{int} : -1
Track.mPoints{vector<Point>}[0].mX{double} : -1
Track.mPoints{vector<Point>}[0].mY{double} : 10
Track.mPoints{vector<Point>}[1].mX{double} : 2
Track.mPoints{vector<Point>}[1].mY{double} : 10

struct Point {
Point() = default;
Point(double x, double y) : mX(x), mY(y) {}
double mX = -110.;
double mY = 10;

};

struct Track {
int mId = -1;
std::vector<Point> mPoints{Point(-1,10), Point(2,10)};

};

“PrintObject ../test/Track.root Track”

unique data identifier pod value

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel 18

OCDB diff
.CDBCompare Run244918_244918_v2_s0.root Run244918_244918_v3_s0.root

(/alice/data/2015/OCDB/TOF/Calib/RunParams/)

DIFFERENCE FOR KEY AliCDBEntry.fId{AliCDBId}.fVersion{int} ABSOLUTE -1

//…

DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fT0{float*}[0] ABSOLUTE -7.72662
DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fT0{float*}[1] ABSOLUTE -3.46628
DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fT0{float*}[2] ABSOLUTE -2.82877

//…

DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fTOFResolution{float*}[0] ABSOLUTE 26.0465
DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fTOFResolution{float*}[1] ABSOLUTE 30.7094
DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fTOFResolution{float*}[2] ABSOLUTE 26.1067

//…

DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fT0Spread{float*}[19] ABSOLUTE -0.0553589
DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fT0Spread{float*}[20] ABSOLUTE 1.43106
DIFFERENCE FOR KEY AliCDBEntry.fObject{AliTOFRunParams}.fT0Spread{float*}[21] ABSOLUTE 1.00253

//…

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

ObjCmp: Feature Request

• Currently required to have the dictionary libs available at the
moment of reading/navigation C++ objects …. although the complete
class structure is also part of the serialized data in form of
TStreamerInfos

• An attempt to implement ObjCmp purely based on TStreamerInfos
failed due to a few unsupported things

• “As a user I would like to be able to fully navigate serialized
ROOT objects without needing the dictionaries used to serialize
them.”

• By-product: Could increase user experience also for navigating
objects in the TBrowser

• ”Should object comparison be native to ROOT?”
19

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel 20

BACKUP

ROOT IO Workshop | June 12, 2017 | Sandro Wenzel

Comparing objects based on text tools

• Pro:
– simple “diff” might be a good enough in simple cases

• Contra:
– multi stage process
– intermediate text output size can be huge
– still requires external tools (xml parser) to parse and extract differences

between 2 xml files
– text handling is slow
– loss of precision for double/float values
– text encoding might be difficult to interpret and diff (for example

compression scheme for std::bitset…)
21

file1.root

file2.root

file1.xml

file2.xml

text/xml
comparision tool

